Results 1  10
of
324
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 775 (5 self)
 Add to MetaCart
(Show Context)
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
Probabilistic checking of proofs: a new characterization of NP
 JOURNAL OF THE ACM
, 1998
"... We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof ..."
Abstract

Cited by 414 (26 self)
 Add to MetaCart
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
A polylogarithmic approximation algorithm for the group Steiner tree problem
 Journal of Algorithms
, 2000
"... The group Steiner tree problem is a generalization of the Steiner tree problem where we ae given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimumweight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich a ..."
Abstract

Cited by 148 (9 self)
 Add to MetaCart
(Show Context)
The group Steiner tree problem is a generalization of the Steiner tree problem where we ae given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimumweight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich and Widmayer and finds applications in VLSI design. The group Steiner tree problem generalizes the set covering problem, and is therefore at least as had. We give a randomized O(log 3 n log k)approximation algorithm for the group Steiner tree problem on an nnode graph, where k is the number of groups. The best previous ink)v/ (Bateman, Helvig, performance guarantee was (1 +  Robins and Zelikovsky).
Improved lowdegree testing and its applications
 IN 29TH STOC
, 1997
"... NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The stro ..."
Abstract

Cited by 142 (17 self)
 Add to MetaCart
NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The strongest previously known connection for this test states that a function passes the test with probability 6 for some d> 7/8 iff the function has agreement N 6 with a polynomial of degree d. We presenta new, and surprisingly strong,analysiswhich shows thatthepreceding statementis truefor 6<<0.5. The analysis uses a version of Hilbe?l irreducibility, a tool used in the factoring of multivariate polynomials. As a consequence we obtain an alternate construction for the following proof system: A constant prover lround proof system for NP languages in which the verifier uses O(log n) random bits, receives answers of size O(log n) bits, and has an error probability of at most 2 – 10g*‘’. Such a proof system, which implies the NPhardness of approximating Set Cover to within fl(log n) factors, has already been obtained by Raz and Safra [28]. Our result was completed after we heard of their claim. A second consequence of our analysis is a self testerlcorrector for any buggy program that (supposedly) computes a polynomial over a finite field. If the program is correct only on 6 fraction of inputs where 15<<0.5, then the tester/corrector determines J and generates 0(~) randomized programs, such that one of the programs is correct on every input, with high probability.
On the complexity of computing minimum energy consumption broadcast subgraphs
 in Symposium on Theoretical Aspects of Computer Science
, 2001
"... Abstract. We consider the problem of computing an optimal range assignment in a wireless network which allows a specified source station to perform a broadcast operation. In particular, we consider this problem as a special case of the following more general combinatorial optimization problem, calle ..."
Abstract

Cited by 110 (13 self)
 Add to MetaCart
(Show Context)
Abstract. We consider the problem of computing an optimal range assignment in a wireless network which allows a specified source station to perform a broadcast operation. In particular, we consider this problem as a special case of the following more general combinatorial optimization problem, called Minimum Energy Consumption Broadcast Subgraph (in short, MECBS): Given a weighted directed graph and a specified source node, find a minimum cost range assignment to the nodes, whose corresponding transmission graph contains a spanning tree rooted at the source node. We first prove that MECBS is not approximable within a constant factor (unless P=NP). We then consider the restriction of MECBS to wireless networks and we prove several positive and negative results, depending on the geometric space dimension and on the distancepower gradient. The main result is a polynomialtime approximation algorithm for the NPhard case in which both the dimension and the gradient are equal to 2: This algorithm can be generalized to the case in which the gradient is greater than or equal to the dimension. 1
Improved Approximation Algorithms for Capacitated Facility Location Problems
"... In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local search heuristic for the capacitated facility location problem (CFLP) in which the service costs obey the triangle inequality produces a solution in polynomial time which is within a factor of 8+ # of the val ..."
Abstract

Cited by 98 (1 self)
 Add to MetaCart
(Show Context)
In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local search heuristic for the capacitated facility location problem (CFLP) in which the service costs obey the triangle inequality produces a solution in polynomial time which is within a factor of 8+ # of the value of an optimal solution. By simplifying their analysis, we are able to show that the same heuristic produces a solution which is within a factor of 6(1 + #) of the value of an optimal solution. Our simplified analysis uses the supermodularity of the cost function of the problem and the integrality of the transshipment polyhedron. Additionally
The Importance of Being Biased
, 2002
"... The Minimum Vertex Cover problem is the problem of, given a graph, finding a smallest set of vertices that touches all edges. We show that it is NPhard to approximate this problem 1.36067, improving on the previously known hardness result for a 7/6 factor. ..."
Abstract

Cited by 88 (7 self)
 Add to MetaCart
(Show Context)
The Minimum Vertex Cover problem is the problem of, given a graph, finding a smallest set of vertices that touches all edges. We show that it is NPhard to approximate this problem 1.36067, improving on the previously known hardness result for a 7/6 factor.