Results 1 
6 of
6
Symmetric tensors and symmetric tensor rank
 Scientific Computing and Computational Mathematics (SCCM
, 2006
"... Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. An ..."
Abstract

Cited by 101 (22 self)
 Add to MetaCart
(Show Context)
Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. Any symmetric tensor can be decomposed into a linear combination of rank1 tensors, each of them being symmetric or not. The rank of a symmetric tensor is the minimal number of rank1 tensors that is necessary to reconstruct it. The symmetric rank is obtained when the constituting rank1 tensors are imposed to be themselves symmetric. It is shown that rank and symmetric rank are equal in a number of cases, and that they always exist in an algebraically closed field. We will discuss the notion of the generic symmetric rank, which, due to the work of Alexander and Hirschowitz, is now known for any values of dimension and order. We will also show that the set of symmetric tensors of symmetric rank at most r is not closed, unless r = 1. Key words. Tensors, multiway arrays, outer product decomposition, symmetric outer product decomposition, candecomp, parafac, tensor rank, symmetric rank, symmetric tensor rank, generic symmetric rank, maximal symmetric rank, quantics AMS subject classifications. 15A03, 15A21, 15A72, 15A69, 15A18 1. Introduction. We
Combinatorics, Superalgebras, Invariant Theory and . . .
"... We provide an elementary introduction to the (characteristic zero) theory of Letterplace Superalgebras, regarded as bimodules with respect to the superderivation actions of a pair of general linear Lie superalgebras, and discuss some applications. ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We provide an elementary introduction to the (characteristic zero) theory of Letterplace Superalgebras, regarded as bimodules with respect to the superderivation actions of a pair of general linear Lie superalgebras, and discuss some applications.
ON THE COMBINATORICS OF YOUNG–CAPELLI SYMMETRIZERS
 SÉMINAIRE LOTHARINGIEN DE COMBINATOIRE 62 (2010), ARTICLE B62D
, 2010
"... We deal with the characteristic zero theory of supersymmetric algebras, regarded as bimodules under the action of a pair of general linear Lie superalgebras, ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We deal with the characteristic zero theory of supersymmetric algebras, regarded as bimodules under the action of a pair of general linear Lie superalgebras,
AN ALGEBRA OF PIECES OF SPACE —
, 904
"... Abstract. We sketch the outlines of Gian Carlo Rota’s interaction with the ideas that Hermann Grassmann developed in his Ausdehnungslehre[13, 15] of 1844 and 1862, as adapted and explained by Giuseppe Peano in 1888. This leads us past what Gian Carlo variously called GrassmannCayley algebra and Pea ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. We sketch the outlines of Gian Carlo Rota’s interaction with the ideas that Hermann Grassmann developed in his Ausdehnungslehre[13, 15] of 1844 and 1862, as adapted and explained by Giuseppe Peano in 1888. This leads us past what Gian Carlo variously called GrassmannCayley algebra and Peano spaces to the Whitney algebra of a matroid, and finally to a resolution of the question “What, really, was Grassmann’s regressive product?”. This final question is the subject of ongoing joint work with Andrea Brini, Francesco Regonati, and William Schmitt. 1. Almost ten years later We are gathered today in order to renew and deepen our recollection of the ways in which our paths intersected that of Gian Carlo Rota. We do this in poignant sadness, but with a bittersweet touch: we are pleased to have this opportunity to meet and to discuss his life and work, since we know how Gian Carlo transformed us through his friendship and his love of mathematics. We will deal only with the most elementary of geometric questions; how to represent pieces of space of various dimensions, in their relation to one another. It’s a simple story, but one that extends over a period of some 160 years. We’ll start and finish with Hermann Grassmann’s project, but the trail will lead us by Giuseppe Peano, Hassler Whitney, to Gian Carlo Rota and his colleagues. Before I start, let me pause for a moment to recall a late afternoon at the Accademia Nazionale dei Lincei, in 1973, on the eve of another talk I was petrified to give, when Gian Carlo decided to teach me how to talk, so I wouldn’t make a fool of myself the following day. The procedure was for me to start my talk, with an audience of one, and he would interrupt whenever there was a problem. We were in that otherwise empty conference hall for over two hours, and I never got past my first paragraph. It was terrifying, but it at least got me through the first battle with my fears and apprehensions, disguised as they usually are by timidity, selfeffacement, and other forms of apologetic behavior. 2. Synthetic Projective Geometry Grassmann’s plan was to develop a purely formal algebra to model natural (synthetic) operations on geometric objects: flat, or linear pieces of space of all possible dimensions. His approach was to be synthetic, so that the symbols in his algebra