Results 1  10
of
51
Clustering with qualitative information
 In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
, 2003
"... We consider the problem of clustering a collection of elements based on pairwise judgments of similarity and dissimilarity. Bansal, Blum and Chawla [1] cast the problem thus: given a graph G whose edges are labeled “+ ” (similar) or “− ” (dissimilar), partition the vertices into clusters so that ..."
Abstract

Cited by 123 (9 self)
 Add to MetaCart
(Show Context)
We consider the problem of clustering a collection of elements based on pairwise judgments of similarity and dissimilarity. Bansal, Blum and Chawla [1] cast the problem thus: given a graph G whose edges are labeled “+ ” (similar) or “− ” (dissimilar), partition the vertices into clusters so that the number of pairs correctly (resp. incorrectly) classified with respect to the input labeling is maximized (resp. minimized). Complete graphs, where the classifier labels every edge, and general graphs, where some edges are not labeled, are both worth studying. We answer several questions left open in [1] and provide a sound overview of clustering with qualitative information. We give a factor 4 approximation for minimization on complete graphs, and a factor O(log n) approximation for general graphs. For the maximization version, a PTAS for complete graphs is shown in [1]; we give a factor 0.7664 approximation for general graphs, noting that a PTAS is unlikely by proving APXhardness. We also prove the APXhardness of minimization on complete graphs. 1.
Approximation algorithms for the 0extension problem
 IN PROCEEDINGS OF THE TWELFTH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 2001
"... In the 0extension problem, we are given a weighted graph with some nodes marked as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the distance between t ..."
Abstract

Cited by 70 (3 self)
 Add to MetaCart
(Show Context)
In the 0extension problem, we are given a weighted graph with some nodes marked as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the distance between the terminals to which its endpoints are assigned. This problem generalizes the multiway cut problem of Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis and is closely related to the metric labeling problem introduced by Kleinberg and Tardos. We present approximation algorithms for 0Extension. In arbitrary graphs, we present a O(log k)approximation algorithm, k being the number of terminals. We also give O(1)approximation guarantees for weighted planar graphs. Our results are based on a natural metric relaxation of the problem, previously considered by Karzanov. It is similar in flavor to the linear programming relaxation of Garg, Vazirani, and Yannakakis for the multicut problem and similar to relaxations for other graph partitioning problems. We prove that the integrality ratio of the metric relaxation is at least c √ lg k for a positive c for infinitely many k. Our results improve some of the results of Kleinberg and Tardos and they further our understanding on how to use metric relaxations.