Results 1 - 10
of
536
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract
-
Cited by 2008 (23 self)
- Add to MetaCart
(Show Context)
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are
Routing Techniques in Wireless Sensor Networks: A Survey
- IEEE WIRELESS COMMUNICATIONS
, 2004
"... Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, howeve ..."
Abstract
-
Cited by 741 (2 self)
- Add to MetaCart
(Show Context)
Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, however, has been given to the routing protocols which might differ depending on the application and network architecture. In this paper, we present a survey of the state-of-the-art routing techniques in WSNs. We first outline the design challenges for routing protocols in WSNs followed by a comprehensive survey of different routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flat, hierarchical, and location-based routing. Furthermore, these protocols can be classified into multipath-based, query-based, negotiation-based, QoS-based, and coherent-based depending on the protocol operation. We study the design tradeoffs between energy and communication overhead savings in every routing paradigm. We also highlight the advantages and performance issues of each routing technique. The paper concludes with possible future research areas.
HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks
- IEEE TRANS. MOBILE COMPUTING
, 2004
"... Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed ..."
Abstract
-
Cited by 590 (1 self)
- Add to MetaCart
Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in Oð1Þ iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.
Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance
- IEEE TRANSACTIONS ON MOBILE COMPUTING
, 2003
"... In this paper, we study a novel forwarding technique based on geographical location of the nodes involved and random selection of the relaying node via contention among receivers. We provide a detailed description of a MAC scheme based on these concepts and on collision avoidance and report on its e ..."
Abstract
-
Cited by 368 (15 self)
- Add to MetaCart
In this paper, we study a novel forwarding technique based on geographical location of the nodes involved and random selection of the relaying node via contention among receivers. We provide a detailed description of a MAC scheme based on these concepts and on collision avoidance and report on its energy and latency performance. A simplified analysis is given first, some relevant trade offs are highlighted, and parameter optimization is pursued. Further, a semi-Markov model is developed which provides a more accurate performance evaluation. Simulation results supporting the validity of our analytical approach are also provided.
Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient Approach
, 2004
"... Prolonged network lifetime, scalability, and load balancing are important requirements for many ad-hoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energy-efficient approach for clustering nodes in adhoc sens ..."
Abstract
-
Cited by 307 (12 self)
- Add to MetaCart
(Show Context)
Prolonged network lifetime, scalability, and load balancing are important requirements for many ad-hoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energy-efficient approach for clustering nodes in adhoc sensor networks. Based on this approach, we present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED does not make any assumptions about the distribution or density of nodes, or about node capabilities, e.g., location-awareness. The clustering process terminates in O(1) iterations, and does not depend on the network topology or size. The protocol incurs low overhead in terms of processing cycles and messages exchanged. It also achieves fairly uniform cluster head distribution across the network. A careful selection of the secondary clustering parameter can balance load among cluster heads. Our simulation results demonstrate that HEED outperforms weight-based clustering protocols in terms of several cluster characteristics. We also apply our approach to a simple application to demonstrate its effectiveness in prolonging the network lifetime and supporting data aggregation.
Energy-Aware Wireless Microsensor Networks
- IEEE Signal Processing Magazine
, 2002
"... This article describes architectural and algorithmic approaches that designers can use to enhance the energy awareness of wireless sensor networks. The article starts off with an analysis of the power consumption characteristics of typical sensor node architectures and identifies the various factors ..."
Abstract
-
Cited by 302 (1 self)
- Add to MetaCart
This article describes architectural and algorithmic approaches that designers can use to enhance the energy awareness of wireless sensor networks. The article starts off with an analysis of the power consumption characteristics of typical sensor node architectures and identifies the various factors that affect system lifetime. We then present a suite of techniques that perform aggressive energy optimization while targeting all stages of sensor network design, from individual nodes to the entire network. Maximizing network lifetime requires the use of a well-structured design methodology, which enables energy -aware design and operation of all aspects of the sensor network, from the underlying hardware platform to the application software and network protocols. Adopting such a holistic approach ensures that energy awareness is incorporated not only into individual sensor nodes but also into groups of communicating nodes and the entire sensor network. By following an energy-aware design methodology based on techniques such as in this article, designers can enhance network lifetime by orders of magnitude.
The Coverage Problem in a Wireless Sensor Network
, 2005
"... One of the fundamental issues in sensor networks is the coverage problem, which reflects how well a sensor network is monitored or tracked by sensors. In this paper, we formulate this problem as a decision problem, whose goal is to determine whether every point in the service area of the sensor ne ..."
Abstract
-
Cited by 292 (8 self)
- Add to MetaCart
One of the fundamental issues in sensor networks is the coverage problem, which reflects how well a sensor network is monitored or tracked by sensors. In this paper, we formulate this problem as a decision problem, whose goal is to determine whether every point in the service area of the sensor network is covered by at least k sensors, where k is a given parameter. The sensing ranges of sensors can be unit disks or non-unit disks. We present polynomial-time algorithms, in terms of the number of sensors, that can be easily translated to distributed protocols. The result is a generalization of some earlier results where only k = 1 is assumed. Applications of the result include determining insufficiently covered areas in a sensor network, enhancing fault-tolerant capability in hostile regions, and conserving energies of redundant sensors in a randomly deployed network. Our solutions can be easily translated to distributed protocols to solve the coverage problem.
Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks
- International Journal of High Performance Computing Applications
, 2002
"... This paper describes two novel techniques, informationdriven sensor querying (IDSQ) and constrained anisotropic diffusion routing (CADR), for energy-efficient data querying and routing in ad hoc sensor networks for a range of collaborative signal processing tasks. The key idea is to introduce an inf ..."
Abstract
-
Cited by 277 (12 self)
- Add to MetaCart
This paper describes two novel techniques, informationdriven sensor querying (IDSQ) and constrained anisotropic diffusion routing (CADR), for energy-efficient data querying and routing in ad hoc sensor networks for a range of collaborative signal processing tasks. The key idea is to introduce an information utility measure to select which sensors to query and to dynamically guide data routing. This allows us to maximize information gain while minimizing detection latency and bandwidth consumption for tasks such as localization and tracking. Our simulation results have demonstrated that the information-driven querying and routing techniques are more energy efficient, have lower detection latency, and provide anytime algorithms to mitigate risks of link/node failures. 1
Movement-assisted sensor deployment
, 2006
"... Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile senso ..."
Abstract
-
Cited by 252 (12 self)
- Add to MetaCart
Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile sensors to get high coverage. Based on Voronoi diagrams, we design two sets of distributed protocols for controlling the movement of sensors, one favoring communication and one favoring movement. In each set of protocols, we use Voronoi diagrams to detect coverage holes and use one of three algorithms to calculate the target locations of sensors if holes exist. Simulation results show the effectiveness of our protocols and give insight on choosing protocols and calculation algorithms under different application requirements and working conditions.
Unreliable Sensor Grids: Coverage, Connectivity and Diameter
- In Proceedings of IEEE INFOCOM
, 2003
"... We consider an unreliable wireless sensor gridnetwork with n nodes placed in a square of unit area. We are interested in the coverage of the region and the connectivity of the network. We first show that the necessary and sufficient conditions for the random grid network to cover the unit square reg ..."
Abstract
-
Cited by 223 (9 self)
- Add to MetaCart
We consider an unreliable wireless sensor gridnetwork with n nodes placed in a square of unit area. We are interested in the coverage of the region and the connectivity of the network. We first show that the necessary and sufficient conditions for the random grid network to cover the unit square region as well as ensure that the active nodes are connected are of the form p(n)r ,wherer(n) is the transmission radius of each node and p(n) is the probability that a node is "active" (not failed). This result indicates that, when n is large, even if each node is highly unreliable and the transmission power is small, we can still maintain connectivity with coverage.