Results 1 -
4 of
4
PCorral-interactive mining of protein interactions from MEDLINE
, 2013
"... The extraction of information from the scientific literature is a complex task-for researchers doing manual curation and for automatic text processing solutions. The identification of protein-protein interactions (PPIs) requires the extraction of protein named entities and their relations. Semi-aut ..."
Abstract
- Add to MetaCart
(Show Context)
The extraction of information from the scientific literature is a complex task-for researchers doing manual curation and for automatic text processing solutions. The identification of protein-protein interactions (PPIs) requires the extraction of protein named entities and their relations. Semi-automatic interactive support is one approach to combine both solutions for efficient working processes to generate reliable database content. In principle, the extraction of PPIs can be achieved with different methods that can be combined to deliver high precision and/or high recall results in different combinations at the same time. Interactive use can be achieved, if the analytical methods are fast enough to process the retrieved documents. PCorral provides interactive mining of PPIs from the scientific literature allowing curators to skim MEDLINE for PPIs at low overheads. The keyword query to PCorral steers the selection of documents, and the subsequent text analysis generates high recall and high precision results for the curator. The underlying components of PCorral process the documents on-the-fly and are available, as well, as web service from the Whatizit infrastructure. The human interface summarizes the identified PPI results, and the involved entities are linked to relevant resources and databases. Altogether, PCorral serves curator at both the beginning and the end of the curation workflow for information retrieval and information extraction.
Open Access
"... Background: The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text min ..."
Abstract
- Add to MetaCart
(Show Context)
Background: The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. Results: A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and geneoriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or
RESEARCH ARTICLE Open Access
"... A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems Yifan Peng1*, Manabu Torii1,2, Cathy H Wu1,2 and K Vijay-Shanker1 Background: Text mining is increasingly used in the biomedical domain because of its ability to automatically gather informatio ..."
Abstract
- Add to MetaCart
(Show Context)
A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems Yifan Peng1*, Manabu Torii1,2, Cathy H Wu1,2 and K Vijay-Shanker1 Background: Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. Results: A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66 % for