Results 1  10
of
1,525
Joint TxRx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization
 IEEE TRANS. SIGNAL PROCESSING
, 2003
"... This paper addresses the joint design of transmit and receive beamforming or linear processing (commonly termed linear precoding at the transmitter and equalization at the receiver) for multicarrier multipleinput multipleoutput (MIMO) channels under a variety of design criteria. Instead of consid ..."
Abstract

Cited by 289 (20 self)
 Add to MetaCart
(Show Context)
This paper addresses the joint design of transmit and receive beamforming or linear processing (commonly termed linear precoding at the transmitter and equalization at the receiver) for multicarrier multipleinput multipleoutput (MIMO) channels under a variety of design criteria. Instead of considering each design criterion in a separate way, we generalize the existing results by developing a unified framework based on considering two families of objective functions that embrace most reasonable criteria to design a communication system: Schurconcave and Schurconvex functions. Once the optimal structure of the transmitreceive processing is known, the design problem simplifies and can be formulated within the powerful framework of convex optimization theory, in which a great number of interesting design criteria can be easily accommodated and efficiently solved, even though closedform expressions may not exist. From this perspective, we analyze a variety of design criteria, and in particular, we derive optimal beamvectors in the sense of having minimum average bit error rate (BER). Additional constraints on the peaktoaverage ratio (PAR) or on the signal dynamic range are easily included in the design. We propose two multilevel waterfilling practical solutions that perform very close to the optimal in terms of average BER with a low implementation complexity. If cooperation among the processing operating at different carriers is allowed, the performance improves significantly. Interestingly, with carrier cooperation, it turns out that the exact optimal solution in terms of average BER can be obtained in closed form.
WaveletBased Texture Retrieval Using Generalized Gaussian Density and KullbackLeibler Distance
 IEEE Trans. Image Processing
, 2002
"... We present a statistical view of the texture retrieval problem by combining the two related tasks, namely feature extraction (FE) and similarity measurement (SM), into a joint modeling and classification scheme. We show that using a consistent estimator of texture model parameters for the FE step fo ..."
Abstract

Cited by 241 (4 self)
 Add to MetaCart
(Show Context)
We present a statistical view of the texture retrieval problem by combining the two related tasks, namely feature extraction (FE) and similarity measurement (SM), into a joint modeling and classification scheme. We show that using a consistent estimator of texture model parameters for the FE step followed by computing the KullbackLeibler distance (KLD) between estimated models for the SM step is asymptotically optimal in term of retrieval error probability. The statistical scheme leads to a new waveletbased texture retrieval method that is based on the accurate modeling of the marginal distribution of wavelet coefficients using generalized Gaussian density (GGD) and on the existence a closed form for the KLD between GGDs. The proposed method provides greater accuracy and flexibility in capturing texture information, while its simplified form has a close resemblance with the existing methods which uses energy distribution in the frequency domain to identify textures. Experimental results on a database of 640 texture images indicate that the new method significantly improves retrieval rates, e.g., from 65% to 77%, compared with traditional approaches, while it retains comparable levels of computational complexity.
The effect of correlated variability on the accuracy of a population code
 Neural Computation
, 1999
"... We study the impact of correlated neuronal firing rate variability on the accuracy with which an encoded quantity can be extracted from a population of neurons. Contrary to a widespread belief, correlations in the variabilities of neuronal firing rates do not, in general, limit the increase in codin ..."
Abstract

Cited by 239 (3 self)
 Add to MetaCart
(Show Context)
We study the impact of correlated neuronal firing rate variability on the accuracy with which an encoded quantity can be extracted from a population of neurons. Contrary to a widespread belief, correlations in the variabilities of neuronal firing rates do not, in general, limit the increase in coding accuracy provided by using large populations of encoding neurons. Furthermore, in some cases, but not all, correlations improve the accuracy of a population code.
Continuous Probabilistic Transform for Voice Conversion
 IEEE Trans. Speech and Audio Processing
, 1998
"... ..."
(Show Context)
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 154 (19 self)
 Add to MetaCart
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells
 J. Neumphysiol
, 1998
"... such as the orientation of a line in the visual field or the location of Two main goals for reconstruction are approached in this the body in space are coded as activity levels in populations of neurons. Reconstruction or decoding is an inverse problem in which paper. The first goal is technical and ..."
Abstract

Cited by 107 (6 self)
 Add to MetaCart
such as the orientation of a line in the visual field or the location of Two main goals for reconstruction are approached in this the body in space are coded as activity levels in populations of neurons. Reconstruction or decoding is an inverse problem in which paper. The first goal is technical and is exemplified by the the physical variables are estimated from observed neural activity. population vector method applied to motor cortical activities Reconstruction is useful first in quantifying how much information during various reaching tasks (Georgopoulos et al. 1986, 1989; about the physical variables is present in the population and, second, Schwartz 1994) and the template matching method applied to in providing insight into how the brain might use distributed represen disparity selective cells in the visual cortex (Lehky and Sejnowtations in solving related computational problems such as visual ob ski 1990) and hippocampal place cells during rapid learning of ject recognition and spatial navigation. Two classes of reconstruction place fields in a novel environment (Wilson and McNaughton methods, namely, probabilistic or Bayesian methods and basis func 1993). In these examples, reconstruction extracts information tion methods, are discussed. They include important existing methods from noisy neuronal population activity and transforms it to a
Massive MIMO in the UL/DL of cellular networks: How many antennas do we need
 IEEE Journal on Selected Areas in Communications
"... Abstract—We consider the uplink (UL) and downlink (DL) of noncooperative multicellular timedivision duplexing (TDD) systems, assuming that the number N of antennas per base station (BS) and the number K of user terminals (UTs) per cell are large. Our system model accounts for channel estimation, ..."
Abstract

Cited by 104 (8 self)
 Add to MetaCart
(Show Context)
Abstract—We consider the uplink (UL) and downlink (DL) of noncooperative multicellular timedivision duplexing (TDD) systems, assuming that the number N of antennas per base station (BS) and the number K of user terminals (UTs) per cell are large. Our system model accounts for channel estimation, pilot contamination, and an arbitrary path loss and antenna correlation for each link. We derive approximations of achievable rates with several linear precoders and detectors which are proven to be asymptotically tight, but accurate for realistic system dimensions, as shown by simulations. It is known from previous work assuming uncorrelated channels, that as N →∞while K is fixed, the system performance is limited by pilot contamination, the simplest precoders/detectors, i.e., eigenbeamforming (BF) and matched filter (MF), are optimal, and the transmit power can be made arbitrarily small. We analyze to which extent these conclusions hold in the more realistic setting where N is not extremely large compared to K. In particular, we derive how many antennas per UT are needed to achieve η % of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with MF and BF to achieve the performance of minimum meansquare error (MMSE) detection and regularized zeroforcing (RZF), respectively. Index Terms—massive MIMO, timedivision duplexing, channel estimation, pilot contamination, large system analysis, large
Consensus in Ad Hoc WSNs With Noisy Links—Part II: Distributed Estimation and Smoothing of Random Signals
"... Abstract—Distributed algorithms are developed for optimal estimation of stationary random signals and smoothing of (even nonstationary) dynamical processes based on generally correlated observations collected by ad hoc wireless sensor networks (WSNs). Maximum a posteriori (MAP) and linear minimum me ..."
Abstract

Cited by 100 (7 self)
 Add to MetaCart
Abstract—Distributed algorithms are developed for optimal estimation of stationary random signals and smoothing of (even nonstationary) dynamical processes based on generally correlated observations collected by ad hoc wireless sensor networks (WSNs). Maximum a posteriori (MAP) and linear minimum meansquare error (LMMSE) schemes, well appreciated for centralized estimation, are shown possible to reformulate for distributed operation through the iterative (alternatingdirection) method of multipliers. Sensors communicate with singlehop neighbors their individual estimates as well as multipliers measuring how far local estimates are from consensus. When iterations reach consensus, the resultant distributed (D) MAP and LMMSE estimators converge to their centralized counterparts when intersensor communication links are ideal. The DMAP estimators do not require the desired estimator to be expressible in closed form, the DLMMSE ones are provably robust to communication or quantization noise and both are particularly simple to implement when the data model is linearGaussian. For decentralized tracking applications, distributed Kalman filtering and smoothing algorithms are derived for anytime MMSE optimal consensusbased state estimation using WSNs. Analysis and corroborating numerical examples demonstrate the merits of the novel distributed estimators. Index Terms—Distributed estimation, Kalman smoother, nonlinear optimization, wireless sensor networks (WSNs).
Toeplitz compressed sensing matrices with applications to sparse channel estimation
, 2010
"... Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of highdimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entri ..."
Abstract

Cited by 95 (12 self)
 Add to MetaCart
(Show Context)
Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of highdimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zeromean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, timeinvariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that timedomain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional leastsquares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.