Results 1  10
of
65
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 460 (22 self)
 Add to MetaCart
(Show Context)
Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes the possibility of stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete system. Considering an ideal underlying signal that has a sufficiently sparse representation, it is assumed that only a noisy version of it can be observed. Assuming further that the overcomplete system is incoherent, it is shown that the optimally sparse approximation to the noisy data differs from the optimally sparse decomposition of the ideal noiseless signal by at most a constant multiple of the noise level. As this optimalsparsity method requires heavy (combinatorial) computational effort, approximation algorithms are considered. It is shown that similar stability is also available using the basis and the matching pursuit algorithms. Furthermore, it is shown that these methods result in sparse approximation of the noisy data that contains only terms also appearing in the unique sparsest representation of the ideal noiseless sparse signal.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 427 (36 self)
 Add to MetaCart
(Show Context)
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
, 2004
"... Abstract. A simultaneous sparse approximation problem requests a good approximation of several input signals at once using different linear combinations of the same elementary signals. At the same time, the problem balances the error in approximation against the total number of elementary signals th ..."
Abstract

Cited by 366 (5 self)
 Add to MetaCart
Abstract. A simultaneous sparse approximation problem requests a good approximation of several input signals at once using different linear combinations of the same elementary signals. At the same time, the problem balances the error in approximation against the total number of elementary signals that participate. These elementary signals typically model coherent structures in the input signals, and they are chosen from a large, linearly dependent collection. The first part of this paper proposes a greedy pursuit algorithm, called Simultaneous Orthogonal Matching Pursuit, for simultaneous sparse approximation. Then it presents some numerical experiments that demonstrate how a sparse model for the input signals can be identified more reliably given several input signals. Afterward, the paper proves that the SOMP algorithm can compute provably good solutions to several simultaneous sparse approximation problems. The second part of the paper develops another algorithmic approach called convex relaxation, and it provides theoretical results on the performance of convex relaxation for simultaneous sparse approximation. Date: Typeset on March 17, 2005. Key words and phrases. Greedy algorithms, Orthogonal Matching Pursuit, multiple measurement vectors, simultaneous
Sparsest solutions of underdetermined linear systems via ℓ
"... We present a condition on the matrix of an underdetermined linear system which guarantees that the solution of the system with minimal ℓqquasinorm is also the sparsest one. This generalizes, and sightly improves, a similar result for the ℓ1norm. We then introduce a simple numerical scheme to compu ..."
Abstract

Cited by 192 (11 self)
 Add to MetaCart
(Show Context)
We present a condition on the matrix of an underdetermined linear system which guarantees that the solution of the system with minimal ℓqquasinorm is also the sparsest one. This generalizes, and sightly improves, a similar result for the ℓ1norm. We then introduce a simple numerical scheme to compute solutions with minimal ℓqquasinorm, and we study its convergence. Finally, we display the results of some experiments which indicate that the ℓqmethod performs better than other available methods. 1
Theoretical results on sparse representations of multiplemeasurement vectors
 IEEE Trans. Signal Process
, 2006
"... Abstract — Multiple measurement vector (MMV) is a relatively new problem in sparse representations. Efficient methods have been proposed. Considering many theoretical results that are available in a simple case – single measure vector (SMV) – the theoretical analysis regarding MMV is lacking. In th ..."
Abstract

Cited by 147 (2 self)
 Add to MetaCart
(Show Context)
Abstract — Multiple measurement vector (MMV) is a relatively new problem in sparse representations. Efficient methods have been proposed. Considering many theoretical results that are available in a simple case – single measure vector (SMV) – the theoretical analysis regarding MMV is lacking. In this paper, some known results of SMV are generalized to MMV. Some of these new results take advantages of additional information in the formulation of MMV. We consider the uniqueness under both an ℓ0norm like criterion and an ℓ1norm like criterion. The consequent equivalence between the ℓ0norm approach and the ℓ1norm approach indicates a computationally efficient way of finding the sparsest representation in an overcomplete dictionary. For greedy algorithms, it is proven that under certain conditions, orthogonal matching pursuit (OMP) can find the sparsest representation of an MMV with computational efficiency, just like in SMV. Simulations show that the predictions made by the proved theorems tend to be very conservative; this is consistent with some recent theoretical advances in probability. The connections will be discussed.
Boosting algorithms: Regularization, prediction and model fitting
 Statistical Science
, 2007
"... Abstract. We present a statistical perspective on boosting. Special emphasis is given to estimating potentially complex parametric or nonparametric models, including generalized linear and additive models as well as regression models for survival analysis. Concepts of degrees of freedom and correspo ..."
Abstract

Cited by 99 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We present a statistical perspective on boosting. Special emphasis is given to estimating potentially complex parametric or nonparametric models, including generalized linear and additive models as well as regression models for survival analysis. Concepts of degrees of freedom and corresponding Akaike or Bayesian information criteria, particularly useful for regularization and variable selection in highdimensional covariate spaces, are discussed as well. The practical aspects of boosting procedures for fitting statistical models are illustrated by means of the dedicated opensource software package mboost. This package implements functions which can be used for model fitting, prediction and variable selection. It is flexible, allowing for the implementation of new boosting algorithms optimizing userspecified loss functions. Key words and phrases: Generalized linear models, generalized additive models, gradient boosting, survival analysis, variable selection, software. 1.
Boosting for highdimensional linear models
 THE ANNALS OF STATISTICS
, 2006
"... We prove that boosting with the squared error loss, L2Boosting, is consistent for very highdimensional linear models, where the number of predictor variables is allowed to grow essentially as fast as O(exp(sample size)), assuming that the true underlying regression function is sparse in terms of th ..."
Abstract

Cited by 80 (4 self)
 Add to MetaCart
We prove that boosting with the squared error loss, L2Boosting, is consistent for very highdimensional linear models, where the number of predictor variables is allowed to grow essentially as fast as O(exp(sample size)), assuming that the true underlying regression function is sparse in terms of the ℓ1norm of the regression coefficients. In the language of signal processing, this means consistency for denoising using a strongly overcomplete dictionary if the underlying signal is sparse in terms of the ℓ1norm. We also propose here an AICbased method for tuning, namely for choosing the number of boosting iterations. This makes L2Boosting computationally attractive since it is not required to run the algorithm multiple times for crossvalidation as commonly used so far. We demonstrate L2Boosting for simulated data, in particular where the predictor dimension is large in comparison to sample size, and for a difficult tumorclassification problem with gene expression microarray data.
The Cosparse Analysis Model and Algorithms
, 2011
"... After a decade of extensive study of the sparse representation synthesis model, we can safely say that this is a mature and stable field, with clear theoretical foundations, and appealing applications. Alongside this approach, there is an analysis counterpart model, which, despite its similarity to ..."
Abstract

Cited by 66 (14 self)
 Add to MetaCart
After a decade of extensive study of the sparse representation synthesis model, we can safely say that this is a mature and stable field, with clear theoretical foundations, and appealing applications. Alongside this approach, there is an analysis counterpart model, which, despite its similarity to the synthesis alternative, is markedly different. Surprisingly, the analysis model did not get a similar attention, and its understanding today is shallow and partial. In this paper we take a closer look at the analysis approach, better define it as a generative model for signals, and contrast it with the synthesis one. This workproposeseffectivepursuitmethodsthat aimtosolveinverseproblemsregularized with the analysismodel prior, accompanied by a preliminary theoretical study of their performance. We demonstrate the effectiveness of the analysis model in several experiments.
Instrumentspecific harmonic atoms for midlevel music representation
 IEEE Trans. on Audio, Speech and Lang. Proc
, 2008
"... Abstract—Several studies have pointed out the need for accurate midlevel representations of music signals for information retrieval and signal processing purposes. In this paper, we propose a new midlevel representation based on the decomposition of a signal into a small number of sound atoms or m ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
(Show Context)
Abstract—Several studies have pointed out the need for accurate midlevel representations of music signals for information retrieval and signal processing purposes. In this paper, we propose a new midlevel representation based on the decomposition of a signal into a small number of sound atoms or molecules bearing explicit musical instrument labels. Each atom is a sum of windowed harmonic sinusoidal partials whose relative amplitudes are specific to one instrument, and each molecule consists of several atoms from the same instrument spanning successive time windows. We design efficient algorithms to extract the most prominent atoms or molecules and investigate several applications of this representation, including polyphonic instrument recognition and music visualization. Index Terms—Midlevel representation, music information retrieval, music visualization, sparse decomposition. I.