Results 1  10
of
1,143
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 538 (19 self)
 Add to MetaCart
The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, networks and graphs, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, and power networks). The collection meets a vital need that artificiallygenerated matrices cannot meet, and is widely used by the sparse matrix algorithms community for the development and performance evaluation of sparse matrix algorithms. The collection includes software for accessing and managing the collection, from MATLAB, Fortran, and C.
Benchmarking Optimization Software with Performance Profiles
, 2001
"... We propose performance profiles  distribution functions for a performance metric  as a tool for benchmarking and comparing optimization software. We show that performance profiles combine the best features of other tools for performance evaluation. 1 Introduction The benchmarking of optimi ..."
Abstract

Cited by 380 (8 self)
 Add to MetaCart
We propose performance profiles  distribution functions for a performance metric  as a tool for benchmarking and comparing optimization software. We show that performance profiles combine the best features of other tools for performance evaluation. 1 Introduction The benchmarking of optimization software has recently gained considerable visibility. Hans Mittlemann's [13] work on a variety of optimization software has frequently uncovered deficiencies in the software and has generally led to software improvements. Although Mittelmann's efforts have gained the most notice, other researchers have been concerned with the evaluation and performance of optimization codes. As recent examples, we cite [1, 2, 3, 4, 6, 12, 17]. The interpretation and analysis of the data generated by the benchmarking process are the main technical issues addressed in this paper. Most benchmarking efforts involve tables displaying the performance of each solver on each problem for a set of metrics such...
Solving semidefinitequadraticlinear programs using SDPT3
 MATHEMATICAL PROGRAMMING
, 2003
"... This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primaldual pathfollowing algorithm ..."
Abstract

Cited by 233 (22 self)
 Add to MetaCart
(Show Context)
This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primaldual pathfollowing algorithms. The software developed by the authors uses Mehrotratype predictorcorrector variants of interiorpoint methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported.
SecondOrder Cone Programming
 MATHEMATICAL PROGRAMMING
, 2001
"... In this paper we survey the second order cone programming problem (SOCP). First we present several applications of the problem in various areas of engineering and robust optimization problems. We also give examples of optimization problems that can be cast as SOCPs. Next we review an algebraic struc ..."
Abstract

Cited by 231 (11 self)
 Add to MetaCart
In this paper we survey the second order cone programming problem (SOCP). First we present several applications of the problem in various areas of engineering and robust optimization problems. We also give examples of optimization problems that can be cast as SOCPs. Next we review an algebraic structure that is connected to SOCP. This algebra is a special case of a Euclidean Jordan algebra. After presenting duality theory, complementary slackness conditions, and definitions and algebraic characterizations of primal and dual nondegeneracy and strict complementarity we review the logarithmic barrier function for the SOCP problem and survey the pathfollowing interior point algorithms for it. Next we examine numerically stable methods for solving the interior point methods and study ways that sparsity in the input data can be exploited. Finally we give some current and future research direction in SOCP.
SPIRAL: Code Generation for DSP Transforms
 PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION
"... Fast changing, increasingly complex, and diverse computing platforms pose central problems in scientific computing: How to achieve, with reasonable effort, portable optimal performance? We present SPIRAL that considers this problem for the performancecritical domain of linear digital signal proces ..."
Abstract

Cited by 212 (39 self)
 Add to MetaCart
Fast changing, increasingly complex, and diverse computing platforms pose central problems in scientific computing: How to achieve, with reasonable effort, portable optimal performance? We present SPIRAL that considers this problem for the performancecritical domain of linear digital signal processing (DSP) transforms. For a specified transform, SPIRAL automatically generates high performance code that is tuned to the given platform. SPIRAL formulates the tuning as an optimization problem, and exploits the domainspecific mathematical structure of transform algorithms to implement a feedbackdriven optimizer. Similar to a human expert, for a specified transform, SPIRAL “intelligently ” generates and explores algorithmic and implementation choices to find the best match to the computer’s microarchitecture. The “intelligence” is provided by search and learning techniques that exploit the structure of the algorithm and implementation space to guide the exploration and optimization. SPIRAL generates high performance code for a broad set of DSP transforms including the discrete Fourier transform, other trigonometric transforms, filter transforms, and discrete wavelet transforms. Experimental results show that the code generated by SPIRAL competes with, and sometimes outperforms, the best available human tuned transform library code.
Emergent behavior in flocks
 IEEE Transactions on Automatic Control
, 2007
"... PRELIMINARY VERSION. As a motivating example we consider a population, say of birds or fish, whose members are moving in IR 3. It has been observed that under some initial conditions, for example on their positions and velocities, the state of the flock converges to one ..."
Abstract

Cited by 188 (3 self)
 Add to MetaCart
PRELIMINARY VERSION. As a motivating example we consider a population, say of birds or fish, whose members are moving in IR 3. It has been observed that under some initial conditions, for example on their positions and velocities, the state of the flock converges to one
Fast Fourier transforms for nonequispaced data: A tutorial
, 2000
"... In this section, we consider approximative methods for the fast computation of multivariate discrete Fourier transforms for nonequispaced data (NDFT) in the time domain and in the frequency domain. In particular, we are interested in the approximation error as function of the arithmetic complexity o ..."
Abstract

Cited by 141 (31 self)
 Add to MetaCart
In this section, we consider approximative methods for the fast computation of multivariate discrete Fourier transforms for nonequispaced data (NDFT) in the time domain and in the frequency domain. In particular, we are interested in the approximation error as function of the arithmetic complexity of the algorithm. We discuss the robustness of NDFTalgorithms with respect to roundoff errors and apply NDFTalgorithms for the fast computation of Bessel transforms.
Convergence speed in distributed consensus and averaging
 IN PROC. OF THE 45TH IEEE CDC
, 2006
"... We study the convergence speed of distributed iterative algorithms for the consensus and averaging problems, with emphasis on the latter. We first consider the case of a fixed communication topology. We show that a simple adaptation of a consensus algorithm leads to an averaging algorithm. We prove ..."
Abstract

Cited by 138 (4 self)
 Add to MetaCart
(Show Context)
We study the convergence speed of distributed iterative algorithms for the consensus and averaging problems, with emphasis on the latter. We first consider the case of a fixed communication topology. We show that a simple adaptation of a consensus algorithm leads to an averaging algorithm. We prove lower bounds on the worstcase convergence time for various classes of linear, timeinvariant, distributed consensus methods, and provide an algorithm that essentially matches those lower bounds. We then consider the case of a timevarying topology, and provide a polynomialtime averaging algorithm.
Estimating differential quantities using polynomial fitting of osculating jets
"... This paper addresses the pointwise estimation of differential properties of a smooth manifold S —a curve in the plane or a surface in 3D — assuming a point cloud sampled over S is provided. The method consists of fitting the local representation of the manifold using a jet, and either interpolation ..."
Abstract

Cited by 118 (7 self)
 Add to MetaCart
(Show Context)
This paper addresses the pointwise estimation of differential properties of a smooth manifold S —a curve in the plane or a surface in 3D — assuming a point cloud sampled over S is provided. The method consists of fitting the local representation of the manifold using a jet, and either interpolation or approximation. A jet is a truncated Taylor expansion, and the incentive for using jets is that they encode all local geometric quantities —such as normal, curvatures, extrema of curvature. On the way to using jets, the question of estimating differential properties is recasted into the more general framework of multivariate interpolation / approximation, a wellstudied problem in numerical analysis. On a theoretical perspective, we prove several convergence results when the samples get denser. For curves and surfaces, these results involve asymptotic estimates with convergence rates depending upon the degree of the jet used. For the particular case of curves, an error bound is also derived. To the best of our knowledge, these results are among the first ones providing accurate estimates for differential quantities of order three and more. On the algorithmic side, we solve the interpolation/approximation problem using Vandermonde systems. Experimental results for surfaces of R 3 are reported. These experiments illustrate the asymptotic convergence results, but also the robustness of the methods on general Computer Graphics models.
An Updated Set of Basic Linear Algebra Subprograms (BLAS)
 ACM Transactions on Mathematical Software
, 2001
"... This paper summarizes the BLAS Technical Forum Standard, a speci #cation of a set of kernel routines for linear algebra, historically called the Basic Linear Algebra Subprograms and commonly known as the BLAS. The complete standard can be found in #1#, and on the BLAS Technical Forum webpage #http: ..."
Abstract

Cited by 117 (7 self)
 Add to MetaCart
(Show Context)
This paper summarizes the BLAS Technical Forum Standard, a speci #cation of a set of kernel routines for linear algebra, historically called the Basic Linear Algebra Subprograms and commonly known as the BLAS. The complete standard can be found in #1#, and on the BLAS Technical Forum webpage #http:##www.netlib.org#blas#blastforum##