Results 1 - 10
of
299
Image Indexing Using Color Correlograms
, 1997
"... We define a new image feature called the color correlogram and use it for image indexing and comparison. This feature distills the spatial correlation of colors, and is both effective and inexpensive for content-based image retrieval. The correlogramrobustly tolerates large changesin appearance and ..."
Abstract
-
Cited by 442 (4 self)
- Add to MetaCart
We define a new image feature called the color correlogram and use it for image indexing and comparison. This feature distills the spatial correlation of colors, and is both effective and inexpensive for content-based image retrieval. The correlogramrobustly tolerates large changesin appearance and shape caused by changes in viewing positions, camera zooms, etc. Experimental evidence suggests that this new feature outperforms not only the traditional color histogram method but also the recently proposed histogram refinement methods for image indexing/retrieval.
Blobworld: Image segmentation using Expectation-Maximization and its application to image querying
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1999
"... Retrieving images from large and varied collections using image content as a key is a challenging and important problem. We present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture. This "B ..."
Abstract
-
Cited by 438 (10 self)
- Add to MetaCart
(Show Context)
Retrieving images from large and varied collections using image content as a key is a challenging and important problem. We present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture. This "Blobworld" representation is created by clustering pixels in a joint color-texture-position feature space. The segmentation algorithm is fully automatic and has been run on a collection of 10,000 natural images. We describe a system that uses the Blobworld representation to retrieve images from this collection. An important aspect of the system is that the user is allowed to view the internal representation of the submitted image and the query results. Similar systems do not offer the user this view into the workings of the system; consequently, query results from these systems can be inexplicable, despite the availability of knobs for adjusting the similarity metrics. By finding image regions whi...
Blobworld: A System for Region-Based Image Indexing and Retrieval
- In Third International Conference on Visual Information Systems
, 1999
"... . Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions ("blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of ..."
Abstract
-
Cited by 375 (4 self)
- Add to MetaCart
(Show Context)
. Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions ("blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of interest, rather than a description of the entire image. In order to make large-scale retrieval feasible, we index the blob descriptions using a tree. Because indexing in the high-dimensional feature space is computationally prohibitive, we use a lower-rank approximation to the high-dimensional distance. Experiments show encouraging results for both querying and indexing. 1 Introduction From a user's point of view, the performance of an information retrieval system can be measured by the quality and speed with which it answers the user's information need. Several factors contribute to overall performance: -- the time required to run each individual query, -- the quality (precision/recall) of each i...
A search engine for 3d models
- ACM Transactions on Graphics
, 2003
"... As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional text-based search techniques are not always effective for 3D data. In this paper, we investigate new shape-based search methods. The key challen ..."
Abstract
-
Cited by 318 (22 self)
- Add to MetaCart
As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional text-based search techniques are not always effective for 3D data. In this paper, we investigate new shape-based search methods. The key challenges are to develop query methods simple enough for novice users and matching algorithms robust enough to work for arbitrary polygonal models. We present a web-based search engine system that supports queries based on 3D sketches, 2D sketches, 3D
Shape Distributions
- ACM Transactions on Graphics
, 2002
"... this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The pr ..."
Abstract
-
Cited by 295 (2 self)
- Add to MetaCart
(Show Context)
this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting
Comparing Images Using Color Coherence Vectors
, 1996
"... Color histograms are used to compare images in many applications. Their advantages are efficiency, and insensitivity to small changes in camera viewpoint. However, color histograms lack spatial information, so images with very di#erent appearances can have similar histograms. For example, a picture ..."
Abstract
-
Cited by 237 (1 self)
- Add to MetaCart
Color histograms are used to compare images in many applications. Their advantages are efficiency, and insensitivity to small changes in camera viewpoint. However, color histograms lack spatial information, so images with very di#erent appearances can have similar histograms. For example, a picture of fall foliage might contain a large number of scattered red pixels
The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments
- IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... This paper presents the theory, design principles, implementation, and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system that has been developed over the past three years. In addition, this document presents the rationale, design, and results of psychophysica ..."
Abstract
-
Cited by 226 (2 self)
- Add to MetaCart
This paper presents the theory, design principles, implementation, and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system that has been developed over the past three years. In addition, this document presents the rationale, design, and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter’s development. The PicHunter project makes four primary contributions to research on content-based image retrieval. First, PicHunter represents a simple instance of a general Bayesian framework we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given what target image they want, PicHunter uses Bayes’s rule to predict what is the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.
Matching 3D Models with Shape Distributions
, 2001
"... Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer vision, molecular biology, computer graphics, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, whi ..."
Abstract
-
Cited by 215 (7 self)
- Add to MetaCart
Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer vision, molecular biology, computer graphics, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, while still discriminating between similar and dissimilar shapes. In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting. We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance between two random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus airplanes) in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications, and model degeneracies. They can be evaluated quickly, and thus the proposed method could be applied as a pre-classifier in an object recognition system or in an interactive content-based retrieval application.
Finding Naked People
, 1996
"... . This paper demonstrates a content-based retrieval strategy that can tell whether there are naked people present in an image. No manual intervention is required. The approach combines color and texture properties to obtain an effective mask for skin regions. The skin mask is shown to be effective f ..."
Abstract
-
Cited by 182 (7 self)
- Add to MetaCart
(Show Context)
. This paper demonstrates a content-based retrieval strategy that can tell whether there are naked people present in an image. No manual intervention is required. The approach combines color and texture properties to obtain an effective mask for skin regions. The skin mask is shown to be effective for a wide range of shades and colors of skin. These skin regions are then fed to a specialized grouper, which attempts to group a human figure using geometric constraints on human structure. This approach introduces a new view of object recognition, where an object model is an organized collection of grouping hints obtained from a combination of constraints on geometric properties such as the structure of individual parts, and the relationships between parts, and constraints on color and texture. The system is demonstrated to have 60% precision and 52% recall on a test set of 138 uncontrolled images of naked people, mostly obtained from the internet, and 1401 assorted control images, drawn f...
Color- and Texture-Based Image Segmentation Using EM and Its Application to Content-Based Image Retrieval
, 1998
"... Retrieving images from large and varied collections using image content as a key is a challenging and important problem. In this paper we present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture ..."
Abstract
-
Cited by 175 (11 self)
- Add to MetaCart
(Show Context)
Retrieving images from large and varied collections using image content as a key is a challenging and important problem. In this paper we present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. This so-called “blobworld ” representation is based on segmentation using the Expectation-Maximization algorithm on combined color and texture features. The texture features we use for the segmentation arise from a new approach to texture description and scale selection. We describe a system that uses the blobworld representation to retrieve images. An important and unique aspect of the system is that, in the context of similarity-based querying, the user is allowed to view the internal representation of the submitted image and the query results. Similar systems do not offer the user this view into the workings of the system; consequently, the outcome of many queries on these systems can be quite inexplicable, despite the availability of knobs for adjusting the similarity metric. 1