Results 1 
4 of
4
Nonpositive curvature and the Ptolemy inequality
"... Abstract. We provide examples of nonlocally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann c ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We provide examples of nonlocally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolemy. 1.
An indiscrete Bieberbach theorem:
"... Nonpositively curved spaces admitting a cocompact isometric action of an amenable group are investigated. A classification is established under the assumption that there is no global fixed point at infinity under the full isometry group. The visual boundary is then a spherical building. When the am ..."
Abstract
 Add to MetaCart
(Show Context)
Nonpositively curved spaces admitting a cocompact isometric action of an amenable group are investigated. A classification is established under the assumption that there is no global fixed point at infinity under the full isometry group. The visual boundary is then a spherical building. When the ambient space is geodesically complete, it must be a product of flats, symmetric spaces, biregular trees and Bruhat–Tits buildings. We provide moreover a sufficient condition for a spherical building arising as the visual boundary of a proper CAT(0) space to be Moufang, and deduce that an irreducible locally finite Euclidean building of dimension ≥ 2 is a Bruhat–Tits building if and only if its automorphism group acts cocompactly and chambertransitively at infinity. 1