Results 1 
2 of
2
Recent Progress in Coalescent Theory
"... Coalescent theory is the study of random processes where particles may join each other to form clusters as time evolves. These notes provide an introduction to some aspects of the mathematics of coalescent processes and their applications to theoretical population genetics and in other fields such ..."
Abstract

Cited by 48 (3 self)
 Add to MetaCart
Coalescent theory is the study of random processes where particles may join each other to form clusters as time evolves. These notes provide an introduction to some aspects of the mathematics of coalescent processes and their applications to theoretical population genetics and in other fields such as spin glass models. The emphasis is on recent work concerning in particular the connection of these processes to continuum random trees and spatial models such as coalescing random walks.
Betacoalescents and continuous stable random trees
, 2006
"... Coalescents with multiple collisions, also known as Λcoalescents, were introduced by Pitman and Sagitov in 1999. These processes describe the evolution of particles that undergo stochastic coagulation in such a way that several blocks can merge at the same time to form a single block. In the case t ..."
Abstract

Cited by 47 (15 self)
 Add to MetaCart
(Show Context)
Coalescents with multiple collisions, also known as Λcoalescents, were introduced by Pitman and Sagitov in 1999. These processes describe the evolution of particles that undergo stochastic coagulation in such a way that several blocks can merge at the same time to form a single block. In the case that the measure Λ is the Beta(2 − α, α) distribution, they are also known to describe the genealogies of large populations where a single individual can produce a large number of offspring. Here we use a recent result of Birkner et al. to prove that Betacoalescents can be embedded in continuous stable random trees, about which much is known due to recent progress of Duquesne and Le Gall. Our proof is based on a construction of the DonnellyKurtz lookdown process using continuous random trees which is of independent interest. This produces a number of results concerning the smalltime behavior of Betacoalescents. Most notably, we recover an almost sure limit theorem of the authors for the number of blocks at small times, and give the multifractal spectrum corresponding to the emergence of blocks with atypical size. Also, we are able to find exact asymptotics for sampling formulae corresponding to the site frequency spectrum and allele frequency spectrum associated with mutations in the context of population genetics.