Results 1 
1 of
1
The Complexity of Multiterminal Cuts
 SIAM Journal on Computing
, 1994
"... In the Multiterminal Cut problem we are given an edgeweighted graph and a subset of the vertices called terminals, and asked for a minimum weight set of edges that separates each terminal from all the others. When the number k of terminals is two, this is simply the mincut, maxflow problem, and ..."
Abstract

Cited by 194 (0 self)
 Add to MetaCart
(Show Context)
In the Multiterminal Cut problem we are given an edgeweighted graph and a subset of the vertices called terminals, and asked for a minimum weight set of edges that separates each terminal from all the others. When the number k of terminals is two, this is simply the mincut, maxflow problem, and can be solved in polynomial time. We show that the problem becomes NPhard as soon as k = 3, but can be solved in polynomial time for planar graphs for any fixed k. The planar problem is NPhard, however, if k is not fixed. We also describe a simple approximation algorithm for arbitrary graphs that is guaranteed to come within a factor of 2  2/k of the optimal cut weight.