Results 1  10
of
27
Modular Data Structure Verification
 EECS DEPARTMENT, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
, 2007
"... This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java ..."
Abstract

Cited by 44 (21 self)
 Add to MetaCart
This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java programs with dynamically allocated data structures. Developers write Jahob specifications in classical higherorder logic (HOL); Jahob reduces the verification problem to deciding the validity of HOL formulas. I present a new method for proving HOL formulas by combining automated reasoning techniques. My method consists of 1) splitting formulas into individual HOL conjuncts, 2) soundly approximating each HOL conjunct with a formula in a more tractable fragment and 3) proving the resulting approximation using a decision procedure or a theorem prover. I present three concrete logics; for each logic I show how to use it to approximate HOL formulas, and how to decide the validity of formulas in this logic. First, I present an approximation of HOL based on a translation to firstorder logic, which enables the use of existing resolutionbased theorem provers. Second, I present an approximation of HOL based on field constraint analysis, a new technique that enables
Decision procedures for algebraic data types with abstractions
 IN 37TH ACM SIGACTSIGPLAN SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES (POPL), 2010. DECISION PROCEDURES FOR ORDERED COLLECTIONS 15 SHE75. SAHARON SHELAH. THE MONADIC THEORY OF ORDER. THA ANNALS OF MATHEMATICS OF MATHEMATICS
, 2010
"... We describe a family of decision procedures that extend the decision procedure for quantifierfree constraints on recursive algebraic data types (term algebras) to support recursive abstraction functions. Our abstraction functions are catamorphisms (term algebra homomorphisms) mapping algebraic data ..."
Abstract

Cited by 36 (15 self)
 Add to MetaCart
(Show Context)
We describe a family of decision procedures that extend the decision procedure for quantifierfree constraints on recursive algebraic data types (term algebras) to support recursive abstraction functions. Our abstraction functions are catamorphisms (term algebra homomorphisms) mapping algebraic data type values into values in other decidable theories (e.g. sets, multisets, lists, integers, booleans). Each instance of our decision procedure family is sound; we identify a widely applicable manytoone condition on abstraction functions that implies the completeness. Complete instances of our decision procedure include the following correctness statements: 1) a functional data structure implementation satisfies a recursively specified invariant, 2) such data structure conforms to a contract given in terms of sets, multisets, lists, sizes, or heights, 3) a transformation of a formula (or lambda term) abstract syntax tree changes the set of free variables in the specified way.
Deciding Boolean Algebra with Presburger Arithmetic
 J. of Automated Reasoning
"... Abstract. We describe an algorithm for deciding the firstorder multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of unbounded ..."
Abstract

Cited by 35 (27 self)
 Add to MetaCart
Abstract. We describe an algorithm for deciding the firstorder multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of unbounded finite sets, and supports arbitrary quantification over sets and integers. Our original motivation for BAPA is deciding verification conditions that arise in the static analysis of data structure consistency properties. Data structures often use an integer variable to keep track of the number of elements they store; an invariant of such a data structure is that the value of the integer variable is equal to the number of elements stored in the data structure. When the data structure content is represented by a set, the resulting constraints can be captured in BAPA. BAPA formulas with quantifier alternations arise when verifying programs with annotations containing quantifiers, or when proving simulation relation conditions for refinement and equivalence of program fragments. Furthermore, BAPA constraints can be used for proving the termination of programs that manipulate data structures, as well as
An algorithm for deciding BAPA: Boolean Algebra with Presburger Arithmetic
 In 20th International Conference on Automated Deduction, CADE20
, 2005
"... Abstract. We describe an algorithm for deciding the firstorder multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of a priory u ..."
Abstract

Cited by 30 (13 self)
 Add to MetaCart
(Show Context)
Abstract. We describe an algorithm for deciding the firstorder multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of a priory unbounded finite sets, and supports arbitrary quantification over sets and integers. Our motivation for BAPA is deciding verification conditions that arise in the static analysis of data structure consistency properties. Data structures often use an integer variable to keep track of the number of elements they store; an invariant of such a data structure is that the value of the integer variable is equal to the number of elements stored in the data structure. When the data structure content is represented by a set, the resulting constraints can be captured in BAPA. BAPA formulas with quantifier alternations arise when verifying programs with annotations containing quantifiers, or when proving simulation relation conditions for refinement and equivalence of program fragments. Furthermore, BAPA constraints can be used for proving the termination of programs that manipulate data structures, and have applications in constraint databases. We give a formal description of a decision procedure for BAPA, which implies the decidability of BAPA. We analyze our algorithm and obtain an elementary upper bound on the running time, thereby giving the first complexity bound for BAPA. Because it works by a reduction to PA, our algorithm yields the decidability of a combination of sets of uninterpreted elements with any decidable extension of PA. Our algorithm can also be used to yield an optimal decision procedure for BA through a reduction to PA with bounded quantifiers. We have implemented our algorithm and used it to discharge verification conditions in the Jahob system for data structure consistency checking of Java programs; our experience with the algorithm is promising. 1
A constraintbased approach to guarded algebraic data types
 ACM Trans. Prog. Languages Systems
, 2007
"... We study HMG(X), an extension of the constraintbased type system HM(X) with deep pattern matching, polymorphic recursion, and guarded algebraic data types. Guarded algebraic data types subsume the concepts known in the literature as indexed types, guarded recursive datatype constructors, (firstcla ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
(Show Context)
We study HMG(X), an extension of the constraintbased type system HM(X) with deep pattern matching, polymorphic recursion, and guarded algebraic data types. Guarded algebraic data types subsume the concepts known in the literature as indexed types, guarded recursive datatype constructors, (firstclass) phantom types, and equality qualified types, and are closely related to inductive types. Their characteristic property is to allow every branch of a case construct to be typechecked under different assumptions about the type variables in scope. We prove that HMG(X) is sound and that, provided recursive definitions carry a type annotation, type inference can be reduced to constraint solving. Constraint solving is decidable, at least for some instances of X, but prohibitively expensive. Effective type inference for guarded algebraic data types is left as an issue for future research.
ConstraintBased Type Inference for Guarded Algebraic Data Types
, 2003
"... Guarded algebraic data types, which subsume the concepts known in the literature as indexed types, guarded recursive datatype constructors, and phantom types, and are closely related to inductive types, have the distinguishing feature that, when typechecking a function defined by cases, every branch ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
(Show Context)
Guarded algebraic data types, which subsume the concepts known in the literature as indexed types, guarded recursive datatype constructors, and phantom types, and are closely related to inductive types, have the distinguishing feature that, when typechecking a function defined by cases, every branch must be checked under di#erent typing assumptions. This mechanism allows exploiting the presence of dynamic tests in the code to produce extra static type information.
Relational analysis of algebraic datatypes
 In Joint 10th European Software Engineering Conference (ESEC) and 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE
, 2005
"... We present a technique that enables the use of finite model finding to check the satisfiability of certain formulas whose intended models are infinite. Such formulas arise when using the language of sets and relations to reason about structured values such as algebraic datatypes. The key idea of our ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
We present a technique that enables the use of finite model finding to check the satisfiability of certain formulas whose intended models are infinite. Such formulas arise when using the language of sets and relations to reason about structured values such as algebraic datatypes. The key idea of our technique is to identify a natural syntactic class of formulas in relational logic for which reasoning about infinite structures can be reduced to reasoning about finite structures. As a result, when a formula belongs to this class, we can use existing finite model finding tools to check whether the formula holds in the desired infinite model. 1
Term algebras with length function and bounded quantifier alternation
 In Theorem Proving in HigherOrder Logics, volume 3223 of LNCS
, 2004
"... .)L: TA! Z. Formulae are formed from term literals and integerliterals using logical connectives and quantifications. Term literals are exactly ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
(Show Context)
.)L: TA! Z. Formulae are formed from term literals and integerliterals using logical connectives and quantifications. Term literals are exactly
Complexity of Subtype Satisfiability over Posets
 in &quot;14th European Symposium on Programming&quot;, LNCS
, 2005
"... Subtype satisfiability is an important problem for designing advanced subtype systems and subtypebased program analysis algorithms. The problem is well understood if the atomic types form a lattice. However, little is known about subtype satisfiability over posets. In this paper, we investigate alg ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
(Show Context)
Subtype satisfiability is an important problem for designing advanced subtype systems and subtypebased program analysis algorithms. The problem is well understood if the atomic types form a lattice. However, little is known about subtype satisfiability over posets. In this paper, we investigate algorithms for and the complexity of subtype satisfiability over general posets. We present a uniform treatment of different flavors of subtyping: simple versus recursive types and structural versus nonstructural subtype orders. Our results are established through a new connection of subtype constraints and modal logic. As a consequence, we settle a problem left open by Tiuryn and Wand in 1993. 1