Results 1  10
of
574
A new approach to abstract syntax with variable binding
 Formal Aspects of Computing
, 2002
"... Abstract. The permutation model of set theory with atoms (FMsets), devised by Fraenkel and Mostowski in the 1930s, supports notions of ‘nameabstraction ’ and ‘fresh name ’ that provide a new way to represent, compute with, and reason about the syntax of formal systems involving variablebinding op ..."
Abstract

Cited by 286 (64 self)
 Add to MetaCart
Abstract. The permutation model of set theory with atoms (FMsets), devised by Fraenkel and Mostowski in the 1930s, supports notions of ‘nameabstraction ’ and ‘fresh name ’ that provide a new way to represent, compute with, and reason about the syntax of formal systems involving variablebinding operations. Inductively defined FMsets involving the nameabstraction set former (together with Cartesian product and disjoint union) can correctly encode syntax modulo renaming of bound variables. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated notion of structural recursion for defining syntaxmanipulating functions (such as capture avoiding substitution, set of free variables, etc.) and a notion of proof by structural induction, both of which remain pleasingly close to informal practice in computer science. 1.
A Tutorial on (Co)Algebras and (Co)Induction
 EATCS Bulletin
, 1997
"... . Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition pr ..."
Abstract

Cited by 269 (36 self)
 Add to MetaCart
(Show Context)
. Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition principle, and as a proof principle for such structures. But there are also important dual "coalgebraic" structures, which do not come equipped with constructor operations but with what are sometimes called "destructor" operations (also called observers, accessors, transition maps, or mutators). Spaces of infinite data (including, for example, infinite lists, and nonwellfounded sets) are generally of this kind. In general, dynamical systems with a hidden, blackbox state space, to which a user only has limited access via specified (observer or mutator) operations, are coalgebras of various kinds. Such coalgebraic systems are common in computer science. And "coinduction" is the appropriate te...
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 238 (49 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Modeling and Verifying Systems using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions
, 2002
"... In this paper, we present the logic of Counter arithmetic with Lambda expressions and Uninterpreted functions (CLU). CLU generalizes the logic of equality with uninterpreted functions (EUF) with constrained lambda expressions, ordering, and successor and predecessor functions. In addition to mod ..."
Abstract

Cited by 156 (43 self)
 Add to MetaCart
In this paper, we present the logic of Counter arithmetic with Lambda expressions and Uninterpreted functions (CLU). CLU generalizes the logic of equality with uninterpreted functions (EUF) with constrained lambda expressions, ordering, and successor and predecessor functions. In addition to modeling pipelined processors that EUF has proved useful for, CLU can be used to model many infinitestate systems including those with infinite memories, finite and infinite queues including lossy channels, and networks of identical processes. Even with this richer expressive power, the validity of a CLU formula can be efficiently decided by translating it to a propositional formula, and then using Boolean methods to check validity. We give theoretical and empirical evidence for the efficiency of our decision procedure. We also describe verification techniques that we have used on a variety of systems, including an outoforder execution unit and the loadstore unit of an industrial microprocessor.
Design of Embedded Systems: Formal Models, Validation, and Synthesis
 PROCEEDINGS OF THE IEEE
, 1999
"... This paper addresses the design of reactive realtime embedded systems. Such systems are often heterogeneous in implementation technologies and design styles, for example by combining hardware ASICs with embedded software. The concurrent design process for such embedded systems involves solving the ..."
Abstract

Cited by 128 (9 self)
 Add to MetaCart
(Show Context)
This paper addresses the design of reactive realtime embedded systems. Such systems are often heterogeneous in implementation technologies and design styles, for example by combining hardware ASICs with embedded software. The concurrent design process for such embedded systems involves solving the specification, validation, and synthesis problems. We review the variety of approaches to these problems that have been taken.
Full functional verification of linked data structures
 In ACM Conf. Programming Language Design and Implementation (PLDI
, 2008
"... We present the first verification of full functional correctness for a range of linked data structure implementations, including mutable lists, trees, graphs, and hash tables. Specifically, we present the use of the Jahob verification system to verify formal specifications, written in classical high ..."
Abstract

Cited by 100 (19 self)
 Add to MetaCart
(Show Context)
We present the first verification of full functional correctness for a range of linked data structure implementations, including mutable lists, trees, graphs, and hash tables. Specifically, we present the use of the Jahob verification system to verify formal specifications, written in classical higherorder logic, that completely capture the desired behavior of the Java data structure implementations (with the exception of properties involving execution time and/or memory consumption). Given that the desired correctness properties include intractable constructs such as quantifiers, transitive closure, and lambda abstraction, it is a challenge to successfully prove the generated verification conditions. Our Jahob verification system uses integrated reasoning to split each verification condition into a conjunction of simpler subformulas, then apply a diverse collection of specialized decision procedures,
Formal Verification of Standards for Distance Vector Routing Protocols
, 2000
"... We show how to use an interactive theorem prover, HOL, together with a model checker, SPIN, to prove key properties of distance vector routing protocols. We do three case studies: correctness of the RIP standard, a sharp realtime bound on RIP stability, and preservation of loopfreedom in AODV, a di ..."
Abstract

Cited by 86 (5 self)
 Add to MetaCart
We show how to use an interactive theorem prover, HOL, together with a model checker, SPIN, to prove key properties of distance vector routing protocols. We do three case studies: correctness of the RIP standard, a sharp realtime bound on RIP stability, and preservation of loopfreedom in AODV, a distance vector protocol for wireless networks. We develop verification techniques suited to routing protocols generally. These case studies show significant benefits from automated support in reduced verification workload and assistance in finding new insights and gaps for standard specifications.
Mechanizing the metatheory of Standard ML
, 2007
"... We present an internal language with equivalent expressive power to Standard ML, and discuss its formalization in LF and the machinechecked verification of its type safety in Twelf. The internal language is intended to serve as the target of elaboration in an elaborative semantics for Standard ML ..."
Abstract

Cited by 80 (11 self)
 Add to MetaCart
We present an internal language with equivalent expressive power to Standard ML, and discuss its formalization in LF and the machinechecked verification of its type safety in Twelf. The internal language is intended to serve as the target of elaboration in an elaborative semantics for Standard ML in the style of Harper and Stone. Therefore, it includes all the programming mechanisms necessary to implement Standard ML, including translucent modules, abstraction, polymorphism, higher kinds, references, exceptions, recursive types, and recursive functions. Our successful formalization of the proof involved a careful interplay between the precise formulations of the various mechanisms, and required the invention of new representation and proof techniques of general interest.
A Reference Model for Requirements and Specifications
, 2000
"... We define a reference model for applying formal methods to the development of user requirements and their reduction to behavioral specification of a system. The approach is characterized by its focus on the shared phenomena that define the interface between the system and the environment in which it ..."
Abstract

Cited by 79 (7 self)
 Add to MetaCart
We define a reference model for applying formal methods to the development of user requirements and their reduction to behavioral specification of a system. The approach is characterized by its focus on the shared phenomena that define the interface between the system and the environment in which it will operate and on how the parts of this interface are controlled. This paper extends our previous work on this model by representing it in higherorder logic and determining some of its key mathematical ramifications. In particular, we introduce a new form of refinement which is pivotal to defining the desired soundness and consistency properties precisely. 1 Introduction There are a collection of artifacts that commonly arise in programming projects. Among these are the program itself, of course, and also the document that describes the requirements of the software. This requirements document may undergo many revisions as the project proceeds. Requirements often fall into two categorie...
Metatheory and Reflection in Theorem Proving: A Survey and Critique
, 1995
"... One way to ensure correctness of the inference performed by computer theorem provers is to force all proofs to be done step by step in a simple, more or less traditional, deductive system. Using techniques pioneered in Edinburgh LCF, this can be made palatable. However, some believe such an appro ..."
Abstract

Cited by 69 (2 self)
 Add to MetaCart
One way to ensure correctness of the inference performed by computer theorem provers is to force all proofs to be done step by step in a simple, more or less traditional, deductive system. Using techniques pioneered in Edinburgh LCF, this can be made palatable. However, some believe such an approach will never be efficient enough for large, complex proofs. One alternative, commonly called reflection, is to analyze proofs using a second layer of logic, a metalogic, and so justify abbreviating or simplifying proofs, making the kinds of shortcuts humans often do or appealing to specialized decision algorithms. In this paper we contrast the fullyexpansive LCF approach with the use of reflection. We put forward arguments to suggest that the inadequacy of the LCF approach has not been adequately demonstrated, and neither has the practical utility of reflection (notwithstanding its undoubted intellectual interest). The LCF system with which we are most concerned is the HOL proof ...