Results 1  10
of
40
An introduction to variational methods for graphical models
 TO APPEAR: M. I. JORDAN, (ED.), LEARNING IN GRAPHICAL MODELS
"... ..."
Learning Bayesian belief networks: An approach based on the MDL principle
 Computational Intelligence
, 1994
"... A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being lear ..."
Abstract

Cited by 247 (7 self)
 Add to MetaCart
(Show Context)
A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being learned. In particular, our method can learn unrestricted multiplyconnected belief networks. Furthermore, unlike other approaches our method allows us to tradeo accuracy and complexity in the learned model. This is important since if the learned model is very complex (highly connected) it can be conceptually and computationally intractable. In such a case it would be preferable to use a simpler model even if it is less accurate. The MDL principle o ers a reasoned method for making this tradeo. We also show that our method generalizes previous approaches based on Kullback crossentropy. Experiments have been conducted to demonstrate the feasibility of the approach. Keywords: Knowledge Acquisition � Bayes Nets � Uncertainty Reasoning. 1
AISBN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 2000
"... Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, ..."
Abstract

Cited by 86 (3 self)
 Add to MetaCart
(Show Context)
Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AISBN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in nitedimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from dierent stages of the algorithm. We tested the performance of the AISBN algorithm along with two state of the art general purpose sampling algorithms, lik...
Variational Probabilistic Inference and the QMRDT Network
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... We describe a variational approximation method for efficient inference in largescale probabilistic models. Variational methods are deterministic procedures that provide approximations to marginal and conditional probabilities of interest. They provide alternatives to approximate inference method ..."
Abstract

Cited by 65 (3 self)
 Add to MetaCart
(Show Context)
We describe a variational approximation method for efficient inference in largescale probabilistic models. Variational methods are deterministic procedures that provide approximations to marginal and conditional probabilities of interest. They provide alternatives to approximate inference methods based on stochastic sampling or search. We describe a variational approach to the problem of diagnostic inference in the "Quick Medical Reference" (QMR) network. The QMR network is a largescale probabilistic graphical model built on statistical and expert knowledge. Exact probabilistic inference is infeasible in this model for all but a small set of cases. We evaluate our variational inference algorithm on a large set of diagnostic test cases, comparing the algorithm to a stateoftheart stochastic sampling method.
An Optimal Approximation Algorithm For Bayesian Inference
 Artificial Intelligence
, 1997
"... Approximating the inference probability Pr[X = xjE = e] in any sense, even for a single evidence node E, is NPhard. This result holds for belief networks that are allowed to contain extreme conditional probabilitiesthat is, conditional probabilities arbitrarily close to 0. Nevertheless, all p ..."
Abstract

Cited by 54 (2 self)
 Add to MetaCart
(Show Context)
Approximating the inference probability Pr[X = xjE = e] in any sense, even for a single evidence node E, is NPhard. This result holds for belief networks that are allowed to contain extreme conditional probabilitiesthat is, conditional probabilities arbitrarily close to 0. Nevertheless, all previous approximation algorithms have failed to approximate efficiently many inferences, even for belief networks without extreme conditional probabilities. We prove that we can approximate efficiently probabilistic inference in belief networks without extreme conditional probabilities. We construct a randomized approximation algorithmthe boundedvariance algorithmthat is a variant of the known likelihoodweighting algorithm. The boundedvariance algorithm is the first algorithm with provably fast inference approximation on all belief networks without extreme conditional probabilities. From the boundedvariance algorithm, we construct a deterministic approximation algorithm u...
A Survey of Algorithms for RealTime Bayesian Network Inference
 In In the joint AAAI02/KDD02/UAI02 workshop on RealTime Decision Support and Diagnosis Systems
, 2002
"... As Bayesian networks are applied to more complex and realistic realworld applications, the development of more efficient inference algorithms working under realtime constraints is becoming more and more important. This paper presents a survey of various exact and approximate Bayesian network ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
(Show Context)
As Bayesian networks are applied to more complex and realistic realworld applications, the development of more efficient inference algorithms working under realtime constraints is becoming more and more important. This paper presents a survey of various exact and approximate Bayesian network inference algorithms. In particular, previous research on realtime inference is reviewed. It provides a framework for understanding these algorithms and the relationships between them. Some important issues in realtime Bayesian networks inference are also discussed.
Inference in Bayesian Networks
, 1999
"... A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduce ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduces major current methods for exact computation, briefly surveys approximation methods, and closes with a brief discussion of open issues.
Intercausal Reasoning with Uninstantiated Ancestor Nodes
 In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI93
, 1993
"... Intercausal reasoning is a common inference pattern involving probabilistic dependence of causes of an observed common effect. The sign of this dependence is captured by a qualitative property called product synergy. The current definition of product synergy is insufficient for intercausal rea ..."
Abstract

Cited by 31 (13 self)
 Add to MetaCart
(Show Context)
Intercausal reasoning is a common inference pattern involving probabilistic dependence of causes of an observed common effect. The sign of this dependence is captured by a qualitative property called product synergy. The current definition of product synergy is insufficient for intercausal reasoning where there are additional uninstantiated causes of the common effect. We propose a new definition of product synergy and prove its adequacy for intercausal reasoning with direct and indirect evidence for the common effect. The new definition is based on a new property matrix half positive semidefiniteness, a weakened form of matrix positive semidefiniteness. 1
Some Properties of Joint Probability Distributions
 In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence (UAI–94
, 1994
"... Several Artificial Intelligence schemes for reasoning under uncertainty explore either explicitly or implicitly asymmetries among probabilities of various states of their uncertain domain models. Even though the correct working of these schemes is practically contingent upon the existence of a ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
(Show Context)
Several Artificial Intelligence schemes for reasoning under uncertainty explore either explicitly or implicitly asymmetries among probabilities of various states of their uncertain domain models. Even though the correct working of these schemes is practically contingent upon the existence of a small number of probable states, no formal justification has been proposed of why this should be the case. This paper attempts to fill this apparent gap by studying asymmetries among probabilities of various states of uncertain models. By rewriting the joint probability distribution over a model's variables into a product of individual variables' prior and conditional probability distributions and applying central limit theorem to this product, we can demonstrate that the probabilities of individual states of the model can be expected to be drawn from highly skewed lognormal distributions. With sufficient asymmetry in individual prior and conditional probability distributions, a small fraction of states can be expected to cover a large portion of the total probability space with the remaining states having practically negligible probability. Theoretical discussion is supplemented by simulation results and an illustrative realworld example. 1
Averagecase analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities
, 1993
"... This paper provides a searchbased algorithm for computing prior and posterior probabilities in discrete Bayesian Networks. This is an "anytime" algorithm, that at any stage can estimate the probabilities and give an error bound. Whereas the most popular Bayesian net algorithms exploit the ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
This paper provides a searchbased algorithm for computing prior and posterior probabilities in discrete Bayesian Networks. This is an "anytime" algorithm, that at any stage can estimate the probabilities and give an error bound. Whereas the most popular Bayesian net algorithms exploit the structure of the network for efficiency, we exploit probability distributions for efficiency. The algorithm is most suited to the case where we have extreme (close to zero or one) probabilities, as is the case in many diagnostic situations where we are diagnosing systems that work most of the time, and for commonsense reasoning tasks where normality assumptions (allegedly) dominate. We give a characterisation of those cases where it works well, and discuss how well it can be expected to work on average. 1 Introduction This paper provides a general purpose searchbased technique for computing posterior probabilities in arbitrarily structured discrete 1 Bayesian networks. Implementations of Bayesia...