Results 1  10
of
92
DavenportSchinzel Sequences and Their Geometric Applications
, 1998
"... An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \ ..."
Abstract

Cited by 439 (105 self)
 Add to MetaCart
An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \Delta \Delta a \Delta \Delta \Delta b \Delta \Delta \Delta of length s + 2 between two distinct symbols a and b. The close relationship between DavenportSchinzel sequences and the combinatorial structure of lower envelopes of collections of functions make the sequences very attractive because a variety of geometric problems can be formulated in terms of lower envelopes. A nearlinear bound on the maximum length of DavenportSchinzel sequences enable us to derive sharp bounds on the combinatorial structure underlying various geometric problems, which in turn yields efficient algorithms for these problems.
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 266 (39 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
Data structures for mobile data
 JOURNAL OF ALGORITHMS
, 1997
"... A kinetic data structure (KDS) maintains an attribute of interest in a system of geometric objects undergoing continuous motion. In this paper we develop a conceptual framework for kinetic data structures, propose a number of criteria for the quality of such structures, and describe a number of fund ..."
Abstract

Cited by 257 (53 self)
 Add to MetaCart
(Show Context)
A kinetic data structure (KDS) maintains an attribute of interest in a system of geometric objects undergoing continuous motion. In this paper we develop a conceptual framework for kinetic data structures, propose a number of criteria for the quality of such structures, and describe a number of fundamental techniques for their design. We illustrate these general concepts by presenting kinetic data structures for maintaining the convex hull and the closest pair of moving points in the plane; these structures behavewell according to the proposed quality criteria for KDSs.
Discrete Geometric Shapes: Matching, Interpolation, and Approximation: A Survey
 Handbook of Computational Geometry
, 1996
"... In this survey we consider geometric techniques which have been used to measure the similarity or distance between shapes, as well as to approximate shapes, or interpolate between shapes. Shape is a modality which plays a key role in many disciplines, ranging from computer vision to molecular biolog ..."
Abstract

Cited by 138 (9 self)
 Add to MetaCart
(Show Context)
In this survey we consider geometric techniques which have been used to measure the similarity or distance between shapes, as well as to approximate shapes, or interpolate between shapes. Shape is a modality which plays a key role in many disciplines, ranging from computer vision to molecular biology. We focus on algorithmic techniques based on computational geometry that have been developed for shape matching, simplification, and morphing. 1 Introduction The matching and analysis of geometric patterns and shapes is of importance in various application areas, in particular in computer vision and pattern recognition, but also in other disciplines concerned with the form of objects such as cartography, molecular biology, and computer animation. The general situation is that we are given two objects A, B and want to know how much they resemble each other. Usually one of the objects may undergo certain transformations like translations, rotations or scalings in order to be matched with th...
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 114 (10 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear programming and related problems, and LPtype problems and their efficient solution. We then describe a variety of applications of these and other techniques to numerous problems in geometric optimization, including facility location, proximity problems, statistical estimators and metrology, placement and intersection of polygons and polyhedra, and ray shooting and other querytype problems.
Content based retrieval of VRML objects  an iterative and interactive approach
, 2001
"... We examine the problem of searching a database of threedimensional objects (given in VRML) for objects similar to a given object. We introduce an algorithm which is both iterative and interactive. Rather than base the search solely on geometric feature similarity, we propose letting the user influe ..."
Abstract

Cited by 113 (6 self)
 Add to MetaCart
(Show Context)
We examine the problem of searching a database of threedimensional objects (given in VRML) for objects similar to a given object. We introduce an algorithm which is both iterative and interactive. Rather than base the search solely on geometric feature similarity, we propose letting the user influence future search results by marking some of the results of the current search as `relevant' or `irrelevant', thus indicating personal preferences. A novel approach, based on SVM, is used for the adaptation of the distance measure consistently with these markings, which brings the `relevant' objects closer and pushes the `irrelevant' objects farther. We show that in practice very few iterations are needed for the system to converge well on what the user "had in mind".
Arrangements and Their Applications
 Handbook of Computational Geometry
, 1998
"... The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arr ..."
Abstract

Cited by 81 (17 self)
 Add to MetaCart
(Show Context)
The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arrangements to problems in motion planning, visualization, range searching, molecular modeling, and geometric optimization. Some results involving planar arrangements of arcs have been presented in a companion chapter in this book, and are extended in this chapter to higher dimensions. Work by P.A. was supported by Army Research Office MURI grant DAAH049610013, by a Sloan fellowship, by an NYI award, and by a grant from the U.S.Israeli Binational Science Foundation. Work by M.S. was supported by NSF Grants CCR9122103 and CCR9311127, by a MaxPlanck Research Award, and by grants from the U.S.Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Ac...
Geometric Pattern Matching under Euclidean Motion
, 1993
"... Given two planar sets A and B, we examine the problem of determining the smallest " such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance " of some member of B. We establish upper bounds on the combinatorial complexity of this su ..."
Abstract

Cited by 69 (2 self)
 Add to MetaCart
Given two planar sets A and B, we examine the problem of determining the smallest " such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance " of some member of B. We establish upper bounds on the combinatorial complexity of this subproblem in modelbased computer vision, when the sets A and B contain points, line segments, or (filledin) polygons. We also show how to use our methods to substantially improve on existing algorithms for finding the minimum Hausdorff distance under Euclidean motion. 1 Author's address: Department of Computer Science, Cornell University, Ithaca, NY 14853. This work was supported by the Advanced Research Projects Agency of the Department of Defense under ONR Contract N0001492J1989, and by ONR Contract N0001492J1839, NSF Contract IRI9006137, and AFOSR Contract AFOSR910328. 2 Author's address: Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218. This work was suppo...
Range Searching
, 1996
"... Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , an ..."
Abstract

Cited by 69 (1 self)
 Add to MetaCart
(Show Context)
Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , and let R be a family of subsets; elements of R are called ranges . We wish to preprocess S into a data structure so that for a query range R, the points in S " R can be reported or counted efficiently. Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If we are only interested in answering a single query, it can be done in linear time, using linear space, by simply checking for each point p 2 S whether p lies in the query range.