Results 1 -
5 of
5
Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model
"... Abstract—Spectral unmixing is an important issue to analyze remotely sensed hyperspectral data. Although the linear mixture model has obvious practical advantages, there are many situations in which it may not be appropriate and could be advantageously replaced by a nonlinear one. In this paper, we ..."
Abstract
-
Cited by 15 (6 self)
- Add to MetaCart
(Show Context)
Abstract—Spectral unmixing is an important issue to analyze remotely sensed hyperspectral data. Although the linear mixture model has obvious practical advantages, there are many situations in which it may not be appropriate and could be advantageously replaced by a nonlinear one. In this paper, we formulate a new kernel-based paradigm that relies on the assumption that the mixing mechanism can be described by a linear mixture of endmember spectra, with additive nonlinear fluctuations defined in a reproducing kernel Hilbert space. This family of models has clear interpretation, and allows to take complex interactions of endmembers into account. Extensive experiment results, with both synthetic and real images, illustrate the generality and effectiveness of this scheme compared with state-of-the-art methods. Index Terms — Hyperspectral imaging, multi-kernel learning, nonlinear spectral unmixing, support vector regression.
SUPERVISED NONLINEAR UNMIXING OF HYPERSPECTRAL IMAGES USING A PRE-IMAGE METHODS
"... Abstract. Spectral unmixing is an important issue to analyze remotely sensed hyperspectral data. This involves the decomposition of each mixed pixel into its pure endmember spectra, and the estimation of the abundance value for each endmember. Although linear mixture models are often considered beca ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
(Show Context)
Abstract. Spectral unmixing is an important issue to analyze remotely sensed hyperspectral data. This involves the decomposition of each mixed pixel into its pure endmember spectra, and the estimation of the abundance value for each endmember. Although linear mixture models are often considered because of their simplicity, there are many situations in which they can be advantageously replaced by nonlinear mixture models. In this chapter, we derive a supervised kernel-based unmixing method that relies on a pre-image problem-solving technique. The kernel selection problem is also briefly considered. We show that partially-linear kernels can serve as an appropriate solution, and the nonlinear part of the kernel can be advantageously designed with manifold-learning-based techniques. Finally, we incorporate spatial information into our method in order to improve unmixing performance. 1
CONTEXT DEPENDENT SPECTRAL UNMIXING By
, 2014
"... This Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutiona ..."
Abstract
- Add to MetaCart
This Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact rihowa01@louisville.edu.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Nonlinear Estimation of Material Abundances in Hyperspectral Images With 1-Norm
"... Abstract—Integrating spatial information into hyperspectral unmixing procedures has been shown to have a positive effect on the estimation of fractional abundances due to the inherent spatial–spectral duality in hyperspectral scenes. However, current research works that take spatial information into ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract—Integrating spatial information into hyperspectral unmixing procedures has been shown to have a positive effect on the estimation of fractional abundances due to the inherent spatial–spectral duality in hyperspectral scenes. However, current research works that take spatial information into account are mainly focused on the linear mixing model. In this paper, we investigate how to incorporate spatial correlation into a nonlinear abundance estimation process. A nonlinear unmixing algorithm operating in reproducing kernel Hilbert spaces, coupled with a 1-type spatial regularization, is derived. Experiment results, with both synthetic and real hyperspectral images, illustrate the effectiveness of the proposed scheme. Index Terms—Hyperspectral imaging, 1-norm regularization, nonlinear spectral unmixing, spatial regularization. I.