Results 1  10
of
355
Dynamic Logic
 Handbook of Philosophical Logic
, 1984
"... ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possibl ..."
Abstract

Cited by 1012 (7 self)
 Add to MetaCart
ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possible values a 2 N. This operation becomes explicit in DL in the form of the program x := ?, called a nondeterministic or wildcard assignment. This is a rather unconventional program, since it is not effective; however, it is quite useful as a descriptive tool. A more conventional way to obtain a square root of y, if it exists, would be the program x := 0 ; while x < y do x := x + 1: (1) In DL, such programs are firstclass objects on a par with formulas, complete with a collection of operators for forming compound programs inductively from a basis of primitive programs. To discuss the effect of the execution of a program on the truth of a formula ', DL uses a modal construct <>', which
A completeness theorem for Kleene algebras and the algebra of regular events
 Information and Computation
, 1994
"... We givea nitary axiomatization of the algebra of regular events involving only equations and equational implications. Unlike Salomaa's axiomatizations, the axiomatization given here is sound for all interpretations over Kleene algebras. 1 ..."
Abstract

Cited by 251 (27 self)
 Add to MetaCart
(Show Context)
We givea nitary axiomatization of the algebra of regular events involving only equations and equational implications. Unlike Salomaa's axiomatizations, the axiomatization given here is sound for all interpretations over Kleene algebras. 1
Kleene algebra with tests
 Transactions on Programming Languages and Systems
, 1997
"... Abstract. We investigate conditions under which a given Kleene algebra with tests is isomorphic to an algebra of binary relations. Two simple separation properties are identified that, along with starcontinuity, are sufficient for nonstandard relational representation. An algebraic condition is ide ..."
Abstract

Cited by 152 (28 self)
 Add to MetaCart
Abstract. We investigate conditions under which a given Kleene algebra with tests is isomorphic to an algebra of binary relations. Two simple separation properties are identified that, along with starcontinuity, are sufficient for nonstandard relational representation. An algebraic condition is identified that is necessary and sufficient for the construction to produce a standard representation. 1
Partial Derivatives of Regular Expressions and Finite Automata Constructions
 Theoretical Computer Science
, 1995
"... . We introduce a notion of a partial derivative of a regular expression. It is a generalization to the nondeterministic case of the known notion of a derivative invented by Brzozowski. We give a constructive definition of partial derivatives, study their properties, and employ them to develop a new ..."
Abstract

Cited by 98 (0 self)
 Add to MetaCart
(Show Context)
. We introduce a notion of a partial derivative of a regular expression. It is a generalization to the nondeterministic case of the known notion of a derivative invented by Brzozowski. We give a constructive definition of partial derivatives, study their properties, and employ them to develop a new algorithm for turning regular expressions into relatively small NFA and to provide certain improvements to Brzozowski's algorithm constructing DFA. We report on a prototype implementation of our algorithm constructing NFA and present some examples. Introduction In 1964 Janusz Brzozowski introduced word derivatives of regular expressions and suggested an elegant algorithm turning a regular expression r into a deterministic finite automata (DFA); the main point of the algorithm is that the word derivatives of r serve as states of the resulting DFA [5]. In the following years derivatives were recognized as a quite useful and productive tool. Conway [8] uses derivatives to present various comp...
Rewriting of Regular Expressions and Regular Path Queries
, 2002
"... Recent work on semistructured data has revitalized the interest in path queries, i.e., queries that ask for all pairs of objects in the database that are connected by a path conforming to a certain specification, in particular to a regular expression. Also, in semistructured data, as well as in da ..."
Abstract

Cited by 98 (29 self)
 Add to MetaCart
Recent work on semistructured data has revitalized the interest in path queries, i.e., queries that ask for all pairs of objects in the database that are connected by a path conforming to a certain specification, in particular to a regular expression. Also, in semistructured data, as well as in data integration, data warehousing, and query optimization, the problem of viewbased query rewriting is receiving much attention: Given a query and a collection of views, generate a new query which uses the views and provides the answer to the original one. In this paper we address the problem of viewbased query rewriting in the context of semistructured data. We present a method for computing the rewriting of a regular expression E in terms of other regular expressions. The method computes the exact rewriting (the one that defines the same regular language as E) if it exists, or the rewriting that defines the maximal language contained in the one defined by E, otherwise. We present a complexity analysis of both the problem and the method, showing that the latter is essentially optimal. Finally, we illustrate how to exploit the method for viewbased rewriting of regular path queries in semistructured data. The complexity results established for the rewriting of regular expressions apply also to the case of regular path queries.
Automata and coinduction (an exercise in coalgebra
 LNCS
, 1998
"... The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which ..."
Abstract

Cited by 86 (19 self)
 Add to MetaCart
(Show Context)
The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which coinduction proof methods for language equality and language inclusion. At the same time, the present treatment of automata theory may serve as an introduction to coalgebra.
Timed Regular Expressions
 Journal of the ACM
, 2001
"... In this paper we define timed regular expressions, a formalism for specifying discrete behaviors augmented with timing information, and prove that its expressive power is equivalent to the timed automata of Alur and Dill. This result is the timed analogue of Kleene Theorem and, similarly to that re ..."
Abstract

Cited by 66 (21 self)
 Add to MetaCart
(Show Context)
In this paper we define timed regular expressions, a formalism for specifying discrete behaviors augmented with timing information, and prove that its expressive power is equivalent to the timed automata of Alur and Dill. This result is the timed analogue of Kleene Theorem and, similarly to that result, the hard part in the proof is the translation from automata to expressions. This result is extended from finite to infinite (in the sense of B uchi) behaviors. In addition to these fundamental results, we give a clean algebraic framework for two commonlyaccepted formalism for timed behaviors, timeevent sequences and piecewiseconstant signals. 1
Action Logic and Pure Induction
 Logics in AI: European Workshop JELIA '90, LNCS 478
, 1991
"... In FloydHoare logic, programs are dynamic while assertions are static (hold at states). In action logic the two notions become one, with programs viewed as onthefly assertions whose truth is evaluated along intervals instead of at states. Action logic is an equational theory ACT conservatively ex ..."
Abstract

Cited by 64 (6 self)
 Add to MetaCart
(Show Context)
In FloydHoare logic, programs are dynamic while assertions are static (hold at states). In action logic the two notions become one, with programs viewed as onthefly assertions whose truth is evaluated along intervals instead of at states. Action logic is an equational theory ACT conservatively extending the equational theory REG of regular expressions with operations preimplication a!b (had a then b) and postimplication b/a (b ifever a). Unlike REG, ACT is finitely based, makes a reflexive transitive closure, and has an equivalent Hilbert system. The crucial axiom is that of pure induction, (a!a) = a!a. This work was supported by the National Science Foundation under grant number CCR8814921. 1 Introduction Many logics of action have been proposed, most of them in the past two decades. Here we define action logic, ACT, a new yet simple juxtaposition of old ideas, and show off some of its attractive aspects. The language of action logic is that of equational regular expressio...
On Hoare Logic and Kleene Algebra with Tests
"... We show that Kleene algebra with tests (KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational reasoning. In addition, we show that all relationally valid inference rules are derivable ..."
Abstract

Cited by 60 (13 self)
 Add to MetaCart
(Show Context)
We show that Kleene algebra with tests (KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational reasoning. In addition, we show that all relationally valid inference rules are derivable in KAT and that deciding the relational validity of such rules is PSPACEcomplete.
On Kleene Algebras and Closed Semirings
, 1990
"... Kleene algebras are an important class of algebraic structures that arise in diverse areas of computer science: program logic and semantics, relational algebra, automata theory, and the design and analysis of algorithms. The literature contains several inequivalent definitions of Kleene algebras and ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
(Show Context)
Kleene algebras are an important class of algebraic structures that arise in diverse areas of computer science: program logic and semantics, relational algebra, automata theory, and the design and analysis of algorithms. The literature contains several inequivalent definitions of Kleene algebras and related algebraic structures [2, 14, 15, 5, 6, 1, 10, 7]. In this paper we establish some new relationships among these structures. Our main results are: There is a Kleene algebra in the sense of [6] that is not *continuous. The categories of *continuous Kleene algebras [5, 6], closed semirings [1, 10] and Salgebras [2] are strongly related by adjunctions. The axioms of Kleene algebra in the sense of [6] are not complete for the universal Horn theory of the regular events. This refutes a conjecture of Conway [2, p. 103]. Righthanded Kleene algebras are not necessarily lefthanded Kleene algebras. This verifies a weaker version of a conjecture of Pratt [15].