Results 1 - 10
of
426
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract
-
Cited by 2008 (23 self)
- Add to MetaCart
(Show Context)
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are
ANALYSIS OF WIRELESS SENSOR NETWORKS FOR HABITAT MONITORING
, 2004
"... We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the require ..."
Abstract
-
Cited by 1490 (19 self)
- Add to MetaCart
We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the requirements of biologists. In the summer of 2002, 43 nodes were deployed on a small island off the coast of Maine streaming useful live data onto the web. Although researchers anticipate some challenges arising in real-world deployments of WSNs, many problems can only be discovered through experience. We present a set of experiences from a four month long deployment on a remote island. We analyze the environmental and node health data to evaluate system performance. The close integration of WSNs with their environment provides environmental data at densities previously impossible. We show that the sensor data is also useful for predicting system operation and network failures. Based on over one million 2 Polastre et. al. data readings, we analyze the node and network design and develop network reliability profiles and failure models.
TAG: a Tiny AGgregation service for ad-hoc sensor networks
- IN OSDI
, 2002
"... ..."
(Show Context)
Versatile Low Power Media Access for Wireless Sensor Networks
, 2004
"... We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme ..."
Abstract
-
Cited by 1099 (19 self)
- Add to MetaCart
We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle and minimize idle listening. B-MAC supports on-the-fly reconfiguration and provides bidirectional interfaces for system services to optimize performance, whether it be for throughput, latency, or power conservation. We build an analytical model of a class of sensor network applications. We use the model to show the effect of changing B-MAC’s parameters and predict the behavior of sensor network applications. By comparing B-MAC to conventional 802.11inspired protocols, specifically S-MAC, we develop an experimental characterization of B-MAC over a wide range of network conditions. We show that B-MAC’s flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible protocols to effectively realize energy efficient sensor network applications.
Fine-grained network time synchronization using reference broadcasts
, 2002
"... Permission is granted for noncommercial reproduction of the work for educational or research purposes. ..."
Abstract
-
Cited by 773 (29 self)
- Add to MetaCart
(Show Context)
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
Understanding packet delivery performance in dense wireless sensor networks
, 2003
"... Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery ..."
Abstract
-
Cited by 661 (15 self)
- Add to MetaCart
(Show Context)
Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery performance:the spatio-temporal characteristics of packet loss, and its environmental dependence. These factors will deeply impact the performance of data acquisition from these networks. In this paper, we report on a systematic medium-scale (up to sixty nodes) measurement of packet delivery in three different environments:an indoor office building, a habitat with moderate foliage, and an open parking lot. Our findings have interesting implications for the design and evaluation of routing and medium-access protocols for sensor networks. Categories and Subject Descriptors C.2.1 [Network Architecture and Design]:Wireless communication; C.4 [Performance of Systems]:Performance
Tinydb: An acquisitional query processing system for sensor networks
- ACM Trans. Database Syst
, 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract
-
Cited by 626 (8 self)
- Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination, and execution. We evaluate these issues in the context of TinyDB, a distributed query processor for smart sensor devices, and show how acquisitional techniques can provide significant reductions in power consumption on our sensor devices. Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query languages; H.2.4 [Database Management]: Systems—Distributed databases; query processing
The design of an acquisitional query processor for sensor networks
- In SIGMOD
, 2003
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract
-
Cited by 523 (25 self)
- Add to MetaCart
(Show Context)
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination, and execution. We evaluate these issues in the context of TinyDB, a distributed query processor for smart sensor devices, and show how acquisitional techniques can provide significant reductions in power consumption on our sensor devices. 1.
An analysis of a large scale habitat monitoring application
- IN PROCEEDINGS OF THE SECOND ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS
, 2004
"... Habitat and environmental monitoring is a driving application for wireless sensor networks. We present an analysis of data from a second generation sensor networks deployed during the summer and autumn of 2003. During a 4 month deployment, these networks, consisting of 150 devices, produced unique d ..."
Abstract
-
Cited by 397 (19 self)
- Add to MetaCart
(Show Context)
Habitat and environmental monitoring is a driving application for wireless sensor networks. We present an analysis of data from a second generation sensor networks deployed during the summer and autumn of 2003. During a 4 month deployment, these networks, consisting of 150 devices, produced unique datasets for both systems and biological analysis. This paper focuses on nodal and network performance, with an emphasis on lifetime, reliability, and the the static and dynamic aspects of single and multi-hop networks. We compare the results collected to expectations set during the design phase: we were able to accurately predict lifetime of the single-hop network, but we underestimated the impact of multihop traffic overhearing and the nuances of power source selection. While initial packet loss data was commensurate with lab experiments, over the duration of the deployment, reliability of the backend infrastructure and the transit network had a dominant impact on overall network performance. Finally, we evaluate the physical design of the sensor node based on deployment experience and a post mortem analysis. The results shed light on a number of design issues from network deployment, through selection of power sources to optimizations of routing decisions.
GHT: A Geographic Hash Table for Data-Centric Storage
, 2002
"... Making effective use of the vast amounts of data gathered by largescale sensor networks will require scalable, self-organizing, and energy-efficient data dissemination algorithms. Previous work has identified data-centric routing as one such method. In an associated position paper [23], we argue tha ..."
Abstract
-
Cited by 392 (30 self)
- Add to MetaCart
(Show Context)
Making effective use of the vast amounts of data gathered by largescale sensor networks will require scalable, self-organizing, and energy-efficient data dissemination algorithms. Previous work has identified data-centric routing as one such method. In an associated position paper [23], we argue that a companion method, data-centric storage (DCS), is also a useful approach. Under DCS, sensed data are stored at a node determined by the name associated with the sensed data. In this paper,