Results 1  10
of
390
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
, 2010
"... ..."
(Show Context)
Smooth minimization of nonsmooth functions
 Math. Programming
, 2005
"... In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit maxstructure. Our approach can be considered as an alternative to blackbox minimization. F ..."
Abstract

Cited by 521 (1 self)
 Add to MetaCart
(Show Context)
In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit maxstructure. Our approach can be considered as an alternative to blackbox minimization. From the viewpoint of efficiency estimates, we manage to improve the traditional bounds on the number of iterations of the gradient schemes from O unchanged. 1 ɛ 2 to O
Fast linear iterations for distributed averaging.
 Systems & Control Letters,
, 2004
"... Abstract We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging ..."
Abstract

Cited by 432 (12 self)
 Add to MetaCart
(Show Context)
Abstract We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph. We show how problem structure can be exploited to speed up interiorpoint methods for solving the fastest distributed linear iteration problem, for networks with up to a thousand or so edges. We also describe a simple subgradient method that handles far larger problems, with up to one hundred thousand edges. We give several extensions and variations on the basic problem.
Optimization of Conditional ValueAtRisk.
 The Journal of Risk,
, 2000
"... Abstract In an intensifying international competition banks are forced to place increased emphasis on enterprise wide risk/return management. Financial risks have to be limited and managed from a bank wide portfolio perspective. Risk management requirements have to be met from an internal as well ..."
Abstract

Cited by 423 (26 self)
 Add to MetaCart
Abstract In an intensifying international competition banks are forced to place increased emphasis on enterprise wide risk/return management. Financial risks have to be limited and managed from a bank wide portfolio perspective. Risk management requirements have to be met from an internal as well as from a regulatory point of view. Banks need to maximize their expected returns under these constraints. This leads to a generalized portfolio optimization problem under different capital restrictions. We pursue a twostep Risk/Return Management Approach ("RRMApproach")
On Projection Algorithms for Solving Convex Feasibility Problems
, 1996
"... Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of the ..."
Abstract

Cited by 326 (43 self)
 Add to MetaCart
(Show Context)
Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of these algorithms, a very broad and flexible framework is investigated . Several crucial new concepts which allow a systematic discussion of questions on behaviour in general Hilbert spaces and on the quality of convergence are brought out. Numerous examples are given. 1991 M.R. Subject Classification. Primary 47H09, 49M45, 6502, 65J05, 90C25; Secondary 26B25, 41A65, 46C99, 46N10, 47N10, 52A05, 52A41, 65F10, 65K05, 90C90, 92C55. Key words and phrases. Angle between two subspaces, averaged mapping, Cimmino's method, computerized tomography, convex feasibility problem, convex function, convex inequalities, convex programming, convex set, Fej'er monotone sequence, firmly nonexpansive mapping, H...
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 289 (9 self)
 Add to MetaCart
(Show Context)
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems, with tens of thousands of features and examples, can be solved in tens of seconds (assuming some sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve very large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warmstart techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.
Distributed Subgradient Methods for Multiagent Optimization
, 2007
"... We study a distributed computation model for optimizing a sum of convex objective functions corresponding to multiple agents. For solving this (not necessarily smooth) optimization problem, we consider a subgradient method that is distributed among the agents. The method involves every agent minimiz ..."
Abstract

Cited by 237 (25 self)
 Add to MetaCart
(Show Context)
We study a distributed computation model for optimizing a sum of convex objective functions corresponding to multiple agents. For solving this (not necessarily smooth) optimization problem, we consider a subgradient method that is distributed among the agents. The method involves every agent minimizing his/her own objective function while exchanging information locally with other agents in the network over a timevarying topology. We provide convergence results and convergence rate estimates for the subgradient method. Our convergence rate results explicitly characterize the tradeoff between a desired accuracy of the generated approximate optimal solutions and the number of iterations needed to achieve the accuracy.
Dual methods for nonconvex spectrum optimization of multicarrier systems
 IEEE TRANS. COMMUN
, 2006
"... The design and optimization of multicarrier communications systems often involve a maximization of the total throughput subject to system resource constraints. The optimization problem is numerically difficult to solve when the problem does not have a convexity structure. This paper makes progress ..."
Abstract

Cited by 202 (7 self)
 Add to MetaCart
(Show Context)
The design and optimization of multicarrier communications systems often involve a maximization of the total throughput subject to system resource constraints. The optimization problem is numerically difficult to solve when the problem does not have a convexity structure. This paper makes progress toward solving optimization problems of this type by showing that under a certain condition called the timesharing condition, the duality gap of the optimization problem is always zero, regardless of the convexity of the objective function. Further, we show that the timesharing condition is satisfied for practical multiuser spectrum optimization problems in multicarrier systems in the limit as the number of carriers goes to infinity. This result leads to efficient numerical algorithms that solve the nonconvex problem in the dual domain. We show that the recently proposed optimal spectrum balancing algorithm for digital subscriber lines can be interpreted as a dual algorithm. This new interpretation gives rise to more efficient dual update methods. It also suggests ways in which the dual objective may be evaluated approximately, further improving the numerical efficiency of the algorithm. We propose a lowcomplexity iterative spectrum balancing algorithm based on these ideas, and show that the new algorithm achieves nearoptimal performance in many practical situations.
A Tutorial on Decomposition Methods for Network Utility Maximization
 IEEE J. SEL. AREAS COMMUN
, 2006
"... A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the comparison ..."
Abstract

Cited by 183 (4 self)
 Add to MetaCart
(Show Context)
A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the comparison across architectural alternatives of modularized network design. Decomposition theory naturally provides the mathematical language to build an analytic foundation for the design of modularized and distributed control of networks. In this tutorial paper, we first review the basics of convexity, Lagrange duality, distributed subgradient method, Jacobi and Gauss–Seidel iterations, and implication of different time scales of variable updates. Then, we introduce primal, dual, indirect, partial, and hierarchical decompositions, focusing on network utility maximization problem formulations and the meanings of primal and dual decompositions in terms of network architectures. Finally, we present recent examples on: systematic search for alternative decompositions; decoupling techniques for coupled objective functions; and decoupling techniques for coupled constraint sets that are not readily decomposable.