Results 1 - 10
of
176
A volumetric method for building complex models from range images,”
- in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,
, 1996
"... Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, ..."
Abstract
-
Cited by 1020 (17 self)
- Add to MetaCart
Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the final manifold by extracting an isosurface from the volumetric grid. We show that under certain assumptions, this isosurface is optimal in the least squares sense. To fill gaps in the model, we tessellate over the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.
A New Voronoi-Based Surface Reconstruction Algorithm
, 2002
"... We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and converg ..."
Abstract
-
Cited by 414 (9 self)
- Add to MetaCart
We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and convergent to the original surface as the sampling density increases. The definition of a good sample is itself interesting: the required sampling density varies locally, rigorously capturing the intuitive notion that featureless areas can be reconstructed from fewer samples. The output mesh interpolates, rather than approximates, the input points. Our algorithm is based on the three-dimensional Voronoi diagram. Given a good program for this fundamental subroutine, the algorithm is quite easy to implement.
Surface Reconstruction by Voronoi Filtering
- Discrete and Computational Geometry
, 1998
"... We give a simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled ..."
Abstract
-
Cited by 405 (11 self)
- Add to MetaCart
We give a simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled surfaces, where density depends on "local feature size", the output is topologically valid and convergent (both pointwise and in surface normals) to the original surface. We describe an implementation of the algorithm and show example outputs. 1 Introduction The problem of reconstructing a surface from scattered sample points arises in many applications such as computer graphics, medical imaging, and cartography. In this paper we consider the specific reconstruction problem in which the input is a set of sample points S drawn from a smooth two-dimensional manifold F embedded in three dimensions, and the desired output is a triangular mesh with vertex set equal to S that faithfully represen...
Poisson Surface Reconstruction
, 2006
"... We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function ..."
Abstract
-
Cited by 369 (5 self)
- Add to MetaCart
We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate reconstruction of surfaces with greater detail than previously achievable.
The Office of the Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays
- In SIGGRAPH 98 Conference Proceedings
, 1998
"... We introduce ideas, proposed technologies, and initial results for an office of the future that is based on a unified application of computer vision and computer graphics in a system that combines and builds upon the notions of the CAVE™, tiled display systems, and image-based modeling. The basic id ..."
Abstract
-
Cited by 352 (28 self)
- Add to MetaCart
(Show Context)
We introduce ideas, proposed technologies, and initial results for an office of the future that is based on a unified application of computer vision and computer graphics in a system that combines and builds upon the notions of the CAVE™, tiled display systems, and image-based modeling. The basic idea is to use real-time computer vision techniques to dynamically extract per-pixel depth and reflectance information for the visible surfaces in the office including walls, furniture, objects, and people, and then to either project images on the surfaces, render images of the surfaces, or interpret changes in the surfaces. In the first case, one could designate every-day (potentially irregular) real surfaces in the office to be used as spatially immersive display surfaces, and then project high-resolution graphics and text onto those surfaces. In the second case, one could transmit the dynamic image-based
Point Set Surfaces
, 2001
"... We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We pre ..."
Abstract
-
Cited by 299 (41 self)
- Add to MetaCart
We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We present tools to increase or decrease the density of the points, thus, allowing an adjustment of the spacing among the points to control the fidelity of the representation. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.
The ball-pivoting algorithm for surface reconstruction.
- IEEE TRansactions on Visualization and Computer Graphics,
, 1999
"... ..."
Computing and rendering point set surfaces.
- IEEE Transactions on Visualization and Computer Graphics,
, 2003
"... ..."
(Show Context)
Multi-level Partition of Unity Implicits
- ACM TRANSACTIONS ON GRAPHICS
, 2003
"... We present a shape representation, the multi-level partition of unity implicit surface, that allows us to construct surface models from very large sets of points. There are three key ingredients to our approach: 1) piecewise quadratic functions that capture the local shape of the surface, 2) weighti ..."
Abstract
-
Cited by 218 (7 self)
- Add to MetaCart
We present a shape representation, the multi-level partition of unity implicit surface, that allows us to construct surface models from very large sets of points. There are three key ingredients to our approach: 1) piecewise quadratic functions that capture the local shape of the surface, 2) weighting functions (the partitions of unity) that blend together these local shape functions, and 3) an octree subdivision method that adapts to variations in the complexity of the local shape. Our approach
Automatic reconstruction of B-spline surfaces of arbitrary topological type
- SIGGRAPH'96
, 1996
"... Creating freeform surfaces is a challenging task even with advanced geometric modeling systems. Laser range scanners offer a promising alternative for model acquisition—the 3D scanning of existing objects or clay maquettes. The problem of converting the dense point sets produced by laser scanners in ..."
Abstract
-
Cited by 173 (0 self)
- Add to MetaCart
(Show Context)
Creating freeform surfaces is a challenging task even with advanced geometric modeling systems. Laser range scanners offer a promising alternative for model acquisition—the 3D scanning of existing objects or clay maquettes. The problem of converting the dense point sets produced by laser scanners into useful geometric models is referred to as surface reconstruction. In this paper, we present a procedure for reconstructing a tensor product B-spline surface from a set of scanned 3D points. Unlike previous work which considers primarily the problem of fitting a single B-spline patch, our goal is to directly reconstruct a surface of arbitrary topological type. We must therefore define the surface as a network of B-spline patches. A key ingredient in our solution is a scheme for automatically constructing both a network of patches and a parametrization of the data points over these patches. In addition, we define the B-spline surface using a surface spline construction, and demonstrate that such an approach leads to an efficient procedure for fitting the surface while maintaining tangent plane continuity. We explore adaptive refinement of the patch network in order to satisfy user-specified error tolerances, and demonstrate our method on both synthetic and real data.