Results 1  10
of
186
An Ensemble Adjustment Kalman Filter for Data Assimilation
, 2001
"... A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear ..."
Abstract

Cited by 294 (13 self)
 Add to MetaCart
A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear
Ensemble Data Assimilation without Perturbed Observations
 MON. WEA. REV
, 2002
"... The ensemble Kalman filter (EnKF) is a data assimilation scheme based on the traditional Kalman filter update equation. An ensemble of forecasts are used to estimate the backgrounderror covariances needed to compute the Kalman gain. It is known that if the same observations and the same gain are ..."
Abstract

Cited by 287 (21 self)
 Add to MetaCart
The ensemble Kalman filter (EnKF) is a data assimilation scheme based on the traditional Kalman filter update equation. An ensemble of forecasts are used to estimate the backgrounderror covariances needed to compute the Kalman gain. It is known that if the same observations and the same gain are used to update each member of the ensemble, the ensemble will systematically underestimate analysiserror covariances. This will cause a degradation of subsequent analyses and may lead to filter divergence. For large ensembles, it is known that this problem can be alleviated by treating the observations as random variables, adding random perturbations to them with the correct statistics. Two important
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
 Physica D
, 2007
"... Data assimilation is an iterative approach to the problem of estimating the state of a dynamical system using both current and past observations of the system together with a model for the system’s time evolution. Rather than solving the problem from scratch each time new observations become availab ..."
Abstract

Cited by 152 (11 self)
 Add to MetaCart
Data assimilation is an iterative approach to the problem of estimating the state of a dynamical system using both current and past observations of the system together with a model for the system’s time evolution. Rather than solving the problem from scratch each time new observations become available, one uses the model to “forecast ” the current state, using a prior state estimate (which incorporates information from past data) as the initial condition, then uses current data to correct the prior forecast to a current state estimate. This Bayesian approach is most effective when the uncertainty in both the observations and in the state estimate, as it evolves over time, are accurately quantified. In this article, I describe a practical method for data assimilation in large, spatiotemporally chaotic systems. The method is a type of “Ensemble Kalman Filter”, in which the state estimate and its approximate uncertainty are represented at any given time by an ensemble of system states. I discuss both the mathematical basis of this approach and its implementation; my primary emphasis is on ease of use and computational speed rather than improving accuracy over previously published approaches to ensemble Kalman filtering. 1
Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments
, 2004
"... A Doppler radar data assimilation system is developed based on ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, we assume the forward models are perfect and radar data are sampled at the analysis grid points. A general pur ..."
Abstract

Cited by 130 (79 self)
 Add to MetaCart
A Doppler radar data assimilation system is developed based on ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, we assume the forward models are perfect and radar data are sampled at the analysis grid points. A general purpose nonhydrostatic compressible model is used with the inclusion of complex multiclass ice microphysics. New aspects compared to previous studies include the demonstration of the ability of EnKF method in retrieving multiple microphysical species associated with a multiclass ice microphysics scheme, and in accurately retrieving the wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and the determination of the relative role of radial velocity and reflectivity data as well as their spatial coverage in recovering the full flow and cloud fields. In general, the system is able to reestablish the model storm extremely well after a number of assimilation cycles, and best results are obtained when both radial velocity and reflectivity data, including reflectivity information outside precipitation regions, are used. Significant positive impact of the reflectivity assimilation
Ensemble Square Root Filters
, 2003
"... Ensemble data assimilation methods assimilate observations using statespace estimation methods and lowrank representations of forecast and analysis error covariances. A key element of such methods is the transformation of the forecast ensemble into an analysis ensemble with appropriate statistics ..."
Abstract

Cited by 118 (8 self)
 Add to MetaCart
Ensemble data assimilation methods assimilate observations using statespace estimation methods and lowrank representations of forecast and analysis error covariances. A key element of such methods is the transformation of the forecast ensemble into an analysis ensemble with appropriate statistics. This transformation may be performed stochastically by treating observations as random variables, or deterministically by requiring that the updated analysis perturbations satisfy the Kalman filter analysis error covariance equation. Deterministic analysis ensemble updates are implementations of Kalman square root filters. The nonuniqueness of the deterministic transformation used in square root Kalman filters provides a framework to compare three recently proposed ensemble data assimilation methods.
OBSTACLES TO HIGHDIMENSIONAL PARTICLE FILTERING
"... Particle filters are ensemblebased assimilation schemes that, unlike the ensemble Kalman filter, employ a fully nonlinear and nonGaussian analysis step to compute the probability distribution function (pdf) of a system’s state conditioned on a set of observations. Evidence is provided that the ens ..."
Abstract

Cited by 93 (5 self)
 Add to MetaCart
Particle filters are ensemblebased assimilation schemes that, unlike the ensemble Kalman filter, employ a fully nonlinear and nonGaussian analysis step to compute the probability distribution function (pdf) of a system’s state conditioned on a set of observations. Evidence is provided that the ensemble size required for a successful particle filter scales exponentially with the problem size. For the simple example in which each component of the state vector is independent, Gaussian and of unit variance, and the observations are of each state component separately with independent, Gaussian errors, simulations indicate that the required ensemble size scales exponentially with the state dimension. In this example, the particle filter requires at least 1011 members when applied to a 200dimensional state. Asymptotic results, following the work of Bengtsson, Bickel and collaborators, are provided for two cases: one in which each prior state component is independent and identically distributed, and one in which both the prior pdf and the observation errors are Gaussian. The asymptotic theory reveals that, in both cases, the required ensemble size scales exponentially with the variance of the observation loglikelihood, rather than with the state dimension per se. 2
Exploiting local low dimensionality of the atmospheric dynamics . . .
 PHYS. REV. LETT
, 2002
"... Recent studies (Patil et al. 2001, 2002) have shown that, when the Earth’s surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector. In this paper ..."
Abstract

Cited by 51 (17 self)
 Add to MetaCart
Recent studies (Patil et al. 2001, 2002) have shown that, when the Earth’s surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector. In this paper we show how this finding can be exploited to formulate a potentially accurate and efficient data assimilation technique. The basic idea is that, since the expected forecast errors lie in a locally low dimensional subspace, the analysis resulting from the data assimilation should also lie in this subspace. This implies that operations only on relatively low dimensional matrices are required. The data assimilation analysis is done locally in a manner allowing massively parallel computation to be exploited. The local analyses are then used to construct global states for advancement to the next forecast time. Potential advantages of the method are discussed. 1
Ensemble data assimilation with the ncep global forecast system
, 2007
"... Realdata experiments with an ensemble data assimilation system using the NCEP Global Forecast System model were performed and compared with the NCEP Global Data Assimilation System (GDAS). All observations in the operational data stream were assimilated for the period 1 January–10 February 2004, ex ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
Realdata experiments with an ensemble data assimilation system using the NCEP Global Forecast System model were performed and compared with the NCEP Global Data Assimilation System (GDAS). All observations in the operational data stream were assimilated for the period 1 January–10 February 2004, except satellite radiances. Because of computational resource limitations, the comparison was done at lower resolution (triangular truncation at wavenumber 62 with 28 levels) than the GDAS realtime NCEP operational runs (triangular truncation at wavenumber 254 with 64 levels). The ensemble data assimilation system outperformed the reducedresolution version of the NCEP threedimensional variational data assimilation system (3DVAR), with the biggest improvement in datasparse regions. Ensemble data assimilation analyses yielded a 24h improvement in forecast skill in the Southern Hemisphere extratropics relative to the NCEP 3DVAR system (the 48h forecast from the ensemble data assimilation system was as accurate as the 24h forecast from the 3DVAR system). Improvements in the datarich Northern Hemisphere, while still statistically significant, were more modest. It remains to be seen whether the improvements seen in the Southern Hemisphere will be retained when satellite radiances are assimilated. Three different parameterizations of background errors unaccounted for in the data assimilation system (including
Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability
 1630 MONTHLY WEATHER REVIEW VOLUME
, 2008
"... The possibility of estimating fundamental parameters common in singlemoment ice microphysics schemes using radar observations is investigated for a modelsimulated supercell storm by examining parameter sensitivity and identifiability. These parameters include the intercept parameters for rain, sn ..."
Abstract

Cited by 50 (26 self)
 Add to MetaCart
The possibility of estimating fundamental parameters common in singlemoment ice microphysics schemes using radar observations is investigated for a modelsimulated supercell storm by examining parameter sensitivity and identifiability. These parameters include the intercept parameters for rain, snow, and hail/graupel, and the bulk densities of snow and hail/graupel. These parameters are closely involved in the definition of drop/particle size distributions of microphysical species but often assume highly uncertain specified values. The sensitivity of model forecast within data assimilation cycles to the parameter values, and the issue of solution uniqueness of the estimation problem, are examined. The ensemble square root filter (EnSRF) is employed for model state estimation. Sensitivity experiments show that the errors in the microphysical parameters have a larger impact on model microphysical fields than on wind fields; radar reflectivity observations are therefore preferred over those of radial velocity for microphysical parameter estimation. The model response time to errors in individual parameters are also investigated. The results suggest that radar data should be used at about 5min intervals for parameter estimation. The response functions calculated from ensemble mean forecasts for all five individual parameters show concave shapes, with unique
A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation
 IN REVIEW
, 2005
"... A fourdimensional variational data assimilation (4DVAR) algorithm is compared to an ensemble Kalman filter (EnKF) for the assimilation of radar data at the convective scale. Using a cloudresolving model, simulated, imperfect radar observations of a supercell storm are assimilated under the assump ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
A fourdimensional variational data assimilation (4DVAR) algorithm is compared to an ensemble Kalman filter (EnKF) for the assimilation of radar data at the convective scale. Using a cloudresolving model, simulated, imperfect radar observations of a supercell storm are assimilated under the assumption of a perfect forecast model. Overall, both assimilation schemes perform well and are able to recover the supercell with comparable accuracy, given radialvelocity and reflectivity observations where rain was present. 4DVAR produces generally better analyses than the EnKF given observations limited to a period of 10 min (or three volume scans), particularly for the wind components. In contrast, the EnKF typically produces better analyses than 4DVAR after several assimilation cycles, especially for model variables not functionally related to the observations. The advantages of the EnKF in later cycles arise at least in part from the fact that the 4DVAR scheme implemented here does not use a forecast from a previous cycle as background or evolve its error covariance. Possible reasons for the initial advantage of 4DVAR are deficiencies in the initial ensemble used by the EnKF, the temporal smoothness constraint used in 4DVAR, and nonlinearities in the evolution of forecast errors over the assimilation window.