Results 1  10
of
64
Approximation algorithms for metric facility location and kmedian problems using the . . .
"... ..."
A Tight Bound on Approximating Arbitrary Metrics by Tree Metrics
 In Proceedings of the 35th Annual ACM Symposium on Theory of Computing
, 2003
"... In this paper, we show that any n point metric space can be embedded into a distribution over dominating tree metrics such that the expected stretch of any edge is O(log n). This improves upon the result of Bartal who gave a bound of O(log n log log n). Moreover, our result is existentially tight; t ..."
Abstract

Cited by 317 (8 self)
 Add to MetaCart
(Show Context)
In this paper, we show that any n point metric space can be embedded into a distribution over dominating tree metrics such that the expected stretch of any edge is O(log n). This improves upon the result of Bartal who gave a bound of O(log n log log n). Moreover, our result is existentially tight; there exist metric spaces where any tree embedding must have distortion#sto n)distortion. This problem lies at the heart of numerous approximation and online algorithms including ones for group Steiner tree, metric labeling, buyatbulk network design and metrical task system. Our result improves the performance guarantees for all of these problems.
On Approximating Arbitrary Metrics by Tree Metrics
 In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
, 1998
"... This paper is concerned with probabilistic approximation of metric spaces. In previous work we introduced the method of ecient approximation of metrics by more simple families of metrics in a probabilistic fashion. In particular we study probabilistic approximations of arbitrary metric spaces by \hi ..."
Abstract

Cited by 281 (16 self)
 Add to MetaCart
(Show Context)
This paper is concerned with probabilistic approximation of metric spaces. In previous work we introduced the method of ecient approximation of metrics by more simple families of metrics in a probabilistic fashion. In particular we study probabilistic approximations of arbitrary metric spaces by \hierarchically wellseparated tree" metric spaces. This has proved as a useful technique for simplifying the solutions to various problems.
A constantfactor approximation algorithm for the kmedian problem
 In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, 1999
"... We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are re ..."
Abstract

Cited by 252 (12 self)
 Add to MetaCart
(Show Context)
We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric kmedian problem, we are given n points in a metric space. We select k of these to be cluster centers, and then assign each point to its closest selected center. If point j is assigned to a center i, the cost incurred is proportional to the distance between i and j. The goal is to select the k centers that minimize the sum of the assignment costs. We give a 6 2 3approximation algorithm for this problem. This improves upon the best previously known result of O(log k log log k), which was obtained by refining and derandomizing a randomized O(log n log log n)approximation algorithm of Bartal. 1
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 227 (11 self)
 Add to MetaCart
(Show Context)
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to ..."
Abstract

Cited by 194 (15 self)
 Add to MetaCart
(Show Context)
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
Analysis of a local search heuristic for facility location problems
 IN PROCEEDINGS OF THE 9TH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1998
"... In this paper, we study approximation algorithms for several NPhard facility location problems. We prove that a simple local search heuristic yields polynomialtime constantfactor approximation bounds for the metric versions of the uncapacitated kmedian problem and the uncapacitated facility loca ..."
Abstract

Cited by 158 (4 self)
 Add to MetaCart
In this paper, we study approximation algorithms for several NPhard facility location problems. We prove that a simple local search heuristic yields polynomialtime constantfactor approximation bounds for the metric versions of the uncapacitated kmedian problem and the uncapacitated facility location problem. (For the kmedian problem, our algorithms require a constantfactor blowup in the parameter k.) This local search heuristic was rst proposed several decades ago, and has been shown to exhibit good practical performance in empirical studies. We also extend the above results to obtain constantfactor approximation bounds for the metric versions of capacitated kmedian and facility location problems.
Approximating a Finite Metric by a Small Number of Tree Metrics
 In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science
, 1998
"... Bartal [4, 5] gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O(log n log log n). His result has found several applications and in particular has resulted in approximation algorithms f ..."
Abstract

Cited by 92 (9 self)
 Add to MetaCart
(Show Context)
Bartal [4, 5] gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O(log n log log n). His result has found several applications and in particular has resulted in approximation algorithms for many graph optimization problems. However approximation algorithms based on his
Approximation Algorithms for the Metric Labeling Problem via a New Linear Programming Formulation
, 2000
"... We consider approximation algorithms for the metric labeling problem. Informally speaking, we are given a weighted graph that specifies relations between pairs of objects drawn from a given set of objects. The goal is to find a minimum cost labeling of these objects where the cost of a labeling is d ..."
Abstract

Cited by 77 (1 self)
 Add to MetaCart
(Show Context)
We consider approximation algorithms for the metric labeling problem. Informally speaking, we are given a weighted graph that specifies relations between pairs of objects drawn from a given set of objects. The goal is to find a minimum cost labeling of these objects where the cost of a labeling is determined by the pairwise relations between the objects and a distance function on labels; the distance function is assumed to be a metric. Each object also incurs an assignment cost that is label, and vertex dependent. The problem was introduced in a recent paper by Kleinberg and Tardos [19], and captures many classification problems that arise in computer vision and related fields. They gave an O(log k log log k) approximation for the general case where k is the number of labels and a 2approximation for the uniform metric case. More recently, Gupta and Tardos [14] gave a 4approximation for the truncated linear metric, a natural nonuniform metric motivated by practical applications to image restoration and visual correspondence. In this paper we introduce a new natural integer programming formulation and show that the integrality gap of its linear relaxation either matches or improves the ratios known for several cases of the metric labeling problem studied until now, providing a unified approach to solving them. Specifically, we show that the integrality gap of our LP is bounded by O(log k log log k) for general metric and 2 for the uniform metric thus matching the ratios in [19]. We also develop an algorithm based on our LP that achieves a ratio of 2 + p 2 ' 3:414 for the truncated linear metric improving the ratio provided by [14]. Our algorithm uses the fact that the integrality gap of our LP is 1 on a linear metric. We believe that our formulation h...