Results 1  10
of
530
Adaptive FECbased error control for Internet telephony
 in Proc. IEEE INFOCOM
, 1999
"... www.inria.fr/rodeo/{bolot,sfosse} ..."
(Show Context)
MAP estimation via agreement on trees: Messagepassing and linear programming
, 2002
"... We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of treestructured distributions, we obtain an upper bound ..."
Abstract

Cited by 191 (9 self)
 Add to MetaCart
We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of treestructured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is tight if and only if all the tree distributions share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original distribution. Next we develop two approaches to attempting to obtain tight upper bounds: (a) a treerelaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds; and (b) a treereweighted maxproduct messagepassing algorithm that is related to but distinct from the maxproduct algorithm. In this way, we establish a connection between a certain LP relaxation of the modefinding problem, and a reweighted form of the maxproduct (minsum) messagepassing algorithm.
MAP estimation via agreement on (hyper)trees: Messagepassing and linear programming approaches
 IEEE Transactions on Information Theory
, 2002
"... We develop an approach for computing provably exact maximum a posteriori (MAP) configurations for a subclass of problems on graphs with cycles. By decomposing the original problem into a convex combination of treestructured problems, we obtain an upper bound on the optimal value of the original ..."
Abstract

Cited by 144 (10 self)
 Add to MetaCart
We develop an approach for computing provably exact maximum a posteriori (MAP) configurations for a subclass of problems on graphs with cycles. By decomposing the original problem into a convex combination of treestructured problems, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is met with equality if and only if the tree problems share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original problem. Next we present and analyze two methods for attempting to obtain tight upper bounds: (a) a treereweighted messagepassing algorithm that is related to but distinct from the maxproduct (minsum) algorithm; and (b) a treerelaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds. Finally, we discuss the conditions that govern when the relaxation is tight, in which case the MAP configuration can be obtained. The analysis described here generalizes naturally to convex combinations of hypertreestructured distributions.
Policy Optimization for Dynamic Power Management
 IEEE TRANSACTIONS ON COMPUTERAIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
, 1998
"... Dynamic power management schemes (also called policies) reduce the power consumption of complex electronic systems by trading off performance for power in a controlled fashion, taking system workload into account. In a powermanaged system it is possible to set components into different states, e ..."
Abstract

Cited by 125 (13 self)
 Add to MetaCart
Dynamic power management schemes (also called policies) reduce the power consumption of complex electronic systems by trading off performance for power in a controlled fashion, taking system workload into account. In a powermanaged system it is possible to set components into different states, each characterized by performance and power consumption levels. The main function of a power management policy is to decide when to perform component state transitions and which transition should be performed, depending on system history, workload and performance constraints. In the past
Decoding ErrorCorrecting Codes via Linear Programming
, 2003
"... Errorcorrecting codes are fundamental tools used to transmit digital information over unreliable channels. Their study goes back to the work of Hamming [Ham50] and Shannon [Sha48], who used them as the basis for the field of information theory. The problem of decoding the original information up ..."
Abstract

Cited by 115 (5 self)
 Add to MetaCart
Errorcorrecting codes are fundamental tools used to transmit digital information over unreliable channels. Their study goes back to the work of Hamming [Ham50] and Shannon [Sha48], who used them as the basis for the field of information theory. The problem of decoding the original information up to the full errorcorrecting potential of the system is often very complex, especially for modern codes that approach the theoretical limits of the communication channel. In this thesis we investigate the application of linear programming (LP) relaxation to the problem of decoding an errorcorrecting code. Linear programming relaxation is a standard technique in approximation algorithms and operations research, and is central to the study of efficient algorithms to find good (albeit suboptimal) solutions to very difficult optimization problems. Our new “LP decoders” have tight combinatorial characterizations of decoding success that can be used to analyze errorcorrecting performance. Furthermore, LP decoders have the desirable (and rare) property that whenever they output a result, it is guaranteed to be the optimal result: the most likely (ML) information sent over the
Everything Old Is New Again: A Fresh Look at Historical Approaches IN MACHINE LEARNING
, 2002
"... ..."
(Show Context)
Theory and applications of Robust Optimization
, 2007
"... In this paper we survey the primary research, both theoretical and applied, in the field of Robust Optimization (RO). Our focus will be on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying the most pr ..."
Abstract

Cited by 101 (15 self)
 Add to MetaCart
(Show Context)
In this paper we survey the primary research, both theoretical and applied, in the field of Robust Optimization (RO). Our focus will be on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying the most prominent theoretical results of RO over the past decade, we will also present some recent results linking RO to adaptable models for multistage decisionmaking problems. Finally, we will highlight successful applications of RO across a wide spectrum of domains, including, but not limited to, finance, statistics, learning, and engineering.
On the conditions used to prove oracle results for the Lasso
 Electron. J. Stat
"... Abstract: Oracle inequalities and variable selection properties for the Lasso in linear models have been established under a variety of different assumptions on the design matrix. We show in this paper how the different conditions and concepts relate to each other. The restricted eigenvalue conditio ..."
Abstract

Cited by 100 (5 self)
 Add to MetaCart
(Show Context)
Abstract: Oracle inequalities and variable selection properties for the Lasso in linear models have been established under a variety of different assumptions on the design matrix. We show in this paper how the different conditions and concepts relate to each other. The restricted eigenvalue condition [2] or the slightly weaker compatibility condition [18] are sufficient for oracle results. We argue that both these conditions allow for a fairly general class of design matrices. Hence, optimality of the Lasso for prediction and estimation holds for more general situations than what it appears from coherence [5, 4] or restricted isometry [10] assumptions.
Partial differential equations and MongeKantorovich mass transfer (surveypaper
 Current Developments in Mathematics, 1997, International Press
, 1999
"... 1.1 Optimal mass transfer 1.2 Relaxation, duality ..."
Efficient Algorithms for Maximum Lifetime Data Gathering and Aggregation in Wireless Sensor Networks
, 2002
"... The rapid advances in processor, memory, and radio technology have enabled the development of distributed networks of small, inexpensive nodes that are capable of sensing, computation, and wireless communication. Sensor networks of the future are envisioned to revolutionize the paradigm of collect ..."
Abstract

Cited by 96 (4 self)
 Add to MetaCart
The rapid advances in processor, memory, and radio technology have enabled the development of distributed networks of small, inexpensive nodes that are capable of sensing, computation, and wireless communication. Sensor networks of the future are envisioned to revolutionize the paradigm of collecting and processing information in diverse environments. However, the severe energy constraints and limited computing resources of the sensors, present major challenges for such a vision to become a reality. We consider