Results 1  10
of
208
Geometry images
 IN PROC. 29TH SIGGRAPH
, 2002
"... Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create onl ..."
Abstract

Cited by 342 (24 self)
 Add to MetaCart
(Show Context)
Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create only semiregular meshes. The original mesh is typically decomposed into a set of disklike charts, onto which the geometry is parametrized and sampled. In this paper, we propose to remesh an arbitrary surface onto a completely regular structure we call a geometry image. It captures geometry as a simple 2D array of quantized points. Surface signals like normals and colors are stored in similar 2D arrays using the same implicit surface parametrization — texture coordinates are absent. To create a geometry image, we cut an arbitrary mesh along a network of edge paths, and parametrize the resulting single chart onto a square. Geometry images can be encoded using traditional image compression algorithms, such as waveletbased coders.
MAPS: Multiresolution Adaptive Parameterization of Surfaces
, 1998
"... We construct smooth parameterizations of irregular connectivity triangulations of arbitrary genus 2manifolds. Our algorithm uses hierarchical simplification to efficiently induce a parameterization of the original mesh over a base domain consisting of a small number of triangles. This initial param ..."
Abstract

Cited by 265 (12 self)
 Add to MetaCart
We construct smooth parameterizations of irregular connectivity triangulations of arbitrary genus 2manifolds. Our algorithm uses hierarchical simplification to efficiently induce a parameterization of the original mesh over a base domain consisting of a small number of triangles. This initial parameterization is further improved through a hierarchical smoothing procedure based on Loop subdivision applied in the parameter domain. Our method supports both fully automatic and user constrained operations. In the latter, we accommodate point and edge constraints to force the align # wailee@cs.princeton.edu + wim@belllabs.com # ps@cs.caltech.edu cowsar@belllabs.com dpd@cs.princeton.edu ment of isoparameter lines with desired features. We show how to use the parameterization for fast, hierarchical subdivision connectivity remeshing with guaranteed error bounds. The remeshing algorithm constructs an adaptively subdivided mesh directly without first resorting to uniform subdivision followed by subsequent sparsification. It thus avoids the exponential cost of the latter. Our parameterizations are also useful for texture mapping and morphing applications, among others.
Multiresolution signal processing for meshes
"... We generalize basic signal processing tools such as downsampling, upsampling, and filters to irregular connectivity triangle meshes. This is accomplished through the design of a nonuniform relaxation procedure whose weights depend on the geometry and we show its superiority over existing schemes wh ..."
Abstract

Cited by 245 (11 self)
 Add to MetaCart
We generalize basic signal processing tools such as downsampling, upsampling, and filters to irregular connectivity triangle meshes. This is accomplished through the design of a nonuniform relaxation procedure whose weights depend on the geometry and we show its superiority over existing schemes whose weights depend only on connectivity. This is combined with known mesh simplification methods to build subdivision and pyramid algorithms. We demonstrate the power of these algorithms through a number of application examples including smoothing, enhancement, editing, and texture mapping.
Progressive Geometry Compression
, 2000
"... We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the r ..."
Abstract

Cited by 239 (13 self)
 Add to MetaCart
We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the reduction of error in a compression setting. Using semiregular meshes, parameter and connectivity information can be virtually eliminated. Coupled with semiregular wavelet transforms, zerotree coding, and subdivision based reconstruction we see improvements in error by a factor four (12dB) compared to other progressive coding schemes. CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling  hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Approximation  approximation of surfaces and contours, wavelets and fractals; I.4.2 [Image Processing and Computer Vision]: Compression (Coding)  Approximate methods Additional K...
Shape modeling with pointsampled geometry
 ACM Transactions on Graphics
, 2003
"... Figure 1: Objects created with our system. (a) boolean operations with scanned geometry, (b) an Octopus modeled by deforming and extruding a sphere, (c) a design study for a Siggraph coffee mug created by boolean operations, freeform deformation and displacement mapping. We present a versatile and ..."
Abstract

Cited by 201 (30 self)
 Add to MetaCart
Figure 1: Objects created with our system. (a) boolean operations with scanned geometry, (b) an Octopus modeled by deforming and extruding a sphere, (c) a design study for a Siggraph coffee mug created by boolean operations, freeform deformation and displacement mapping. We present a versatile and complete freeform shape modeling framework for pointsampled geometry. By combining unstructured point clouds with the implicit surface definition of the moving least squares approximation, we obtain a hybrid geometry representation that allows us to exploit the advantages of implicit and parametric surface models. Based on this representation we introduce a shape modeling system that enables the designer to perform large constrained deformations as well as boolean operations on arbitrarily shaped objects. Due to minimum consistency requirements, pointsampled surfaces can easily be restructured on the fly to support extreme geometric deformations during interactive editing. In addition, we show that strict topology control is possible and sharp features can be generated and preserved on pointsampled objects. We demonstrate the effectiveness of our system on a large set of input models, including noisy range scans, irregular point clouds, and sparsely as well as densely sampled models.
Displaced subdivision surfaces
 Siggraph 2000, Computer Graphics Proceedings, Annual Conference Series, pages 85–94. ACM Press / ACM SIGGRAPH
, 2000
"... In this paper we introduce a new surface representation, the displaced subdivision surface. It represents a detailed surface model as a scalarvalued displacement over a smooth domain surface. Our representation defines both the domain surface and the displacement function using a unified subdivisio ..."
Abstract

Cited by 158 (2 self)
 Add to MetaCart
(Show Context)
In this paper we introduce a new surface representation, the displaced subdivision surface. It represents a detailed surface model as a scalarvalued displacement over a smooth domain surface. Our representation defines both the domain surface and the displacement function using a unified subdivision framework, allowing for simple and efficient evaluation of analytic surface properties. We present a simple, automatic scheme for converting detailed geometric models into such a representation. The challenge in this conversion process is to find a simple subdivision surface that still faithfully expresses the detailed model as its offset. We demonstrate that displaced subdivision surfaces offer a number of benefits, including geometry compression, editing, animation, scalability, and adaptive rendering. In particular, the encoding of fine detail as a scalar function makes the representation extremely compact. Additional Keywords: geometry compression, multiresolution geometry, displacement maps, bump maps, multiresolution editing, animation.
Normal Meshes
, 2000
"... Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approxi ..."
Abstract

Cited by 144 (8 self)
 Add to MetaCart
Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approximate any surface arbitrarily closely with a normal semiregular mesh. Normal meshes can be useful in numerous applications such as compression, filtering, rendering, texturing, and modeling.
Progressive Forest Split Compression
, 1998
"... In this paper we introduce the Progressive Forest Split (PFS) representation, a new adaptive refinement scheme for storing and transmitting manifold triangular meshes in progressive and highly compressed form. As in the Progressive Mesh (PM) method of Hoppe, a triangular mesh is represented as a low ..."
Abstract

Cited by 143 (9 self)
 Add to MetaCart
In this paper we introduce the Progressive Forest Split (PFS) representation, a new adaptive refinement scheme for storing and transmitting manifold triangular meshes in progressive and highly compressed form. As in the Progressive Mesh (PM) method of Hoppe, a triangular mesh is represented as a low resolution polygonal model followed by a sequence of refinement operations, each one specifying how to add triangles and vertices to the previous level of detail to obtain a new level. The PFS format shares with PM and other refinement schemes the ability to smoothly interpolate between consecutive levels of detail. However, it achieves much higher compression ratios than PM by using a more complex refinement operation which can, at the expense of reduced granularity, be encoded more efficiently. A forest split operation doubling the number n of triangles of a mesh requires a maximum of approximately 3:5n bits to represent the connectivity changes, as opposed to approximately #5 + log 2 #n## n bits in PM. We describe
√3subdivision
 IN PROCEEDINGS OF ACM SIGGRAPH
, 2000
"... A new stationary subdivision scheme is presented which performs slower topological refinement than the usual dyadic split operation. The number of triangles increases in every step by a factor of 3 instead of 4. Applying the subdivision operator twice causes a uniform refinement with trisection of ..."
Abstract

Cited by 138 (4 self)
 Add to MetaCart
A new stationary subdivision scheme is presented which performs slower topological refinement than the usual dyadic split operation. The number of triangles increases in every step by a factor of 3 instead of 4. Applying the subdivision operator twice causes a uniform refinement with trisection of every original edge (hence the name 3subdivision) while two dyadic splits would quadsect every original edge. Besides the finer gradation of the hierarchy levels, the new scheme has several important properties: The stencils for the subdivision rules have minimum size and maximum symmetry. The smoothness of the limit surface is C2 everywhere except for the extraordinary points where it is C1. The convergence analysis of the scheme is presented based on a new general technique which also applies to the analysis of other subdivision schemes. The new splitting operation enables locally adaptive refinement under builtin preservation of the mesh consistency without temporary crackfixing between neighboring faces from different refinement levels. The size of the surrounding mesh area which is affected by selective refinement is smaller than for the dyadic split operation. We further present a simple extension of the new subdivision scheme which makes it applicable to meshes with boundary and allows us to generate sharp feature lines.
Subdivision Surfaces: A New Paradigm For ThinShell FiniteElement Analysis
 INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
, 2000
"... We develop a new paradigm for thinshell finiteelement analysis based on the use of subdivision surfaces for: i) describing the geometry of the shell in its undeformed configuration, and ii) generating smooth interpolated displacement fields possessing bounded energy within the strict framework ..."
Abstract

Cited by 133 (30 self)
 Add to MetaCart
(Show Context)
We develop a new paradigm for thinshell finiteelement analysis based on the use of subdivision surfaces for: i) describing the geometry of the shell in its undeformed configuration, and ii) generating smooth interpolated displacement fields possessing bounded energy within the strict framework of the KirchhoffLove theory of thin shells. The particular subdivision strategy adopted here is Loop's scheme, with extensions such as required to account for creases and displacement boundary conditions. The displacement fields obtained by subdivision are H 2 and, consequently, have a finite KirchhoffLove energy. The resulting finite elements contain three nodes and element integrals are computed by a onepoint quadrature. The displacement field of the shell is interpolated from nodal displacements only. In particular, no nodal rotations are used in the interpolation. The interpolation scheme induced by subdivision is nonlocal, i. e., the displacement field over one element depend on the nodal displacements of the element nodes and all nodes of immediately neighboring elements. However, the use of subdivision surfaces ensures that all the local displacement fields thus constructed combine conformingly to define one single limit surface.