Results 1 - 10
of
473
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into ..."
Abstract
-
Cited by 1398 (21 self)
- Add to MetaCart
... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Detecting faces in images: A survey
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract
-
Cited by 839 (4 self)
- Add to MetaCart
(Show Context)
Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face regardless of its three-dimensional position, orientation, and the lighting conditions. Such a problem is challenging because faces are nonrigid and have a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics, and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.
Locality Preserving Projection,"
- Neural Information Processing System,
, 2004
"... Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the ..."
Abstract
-
Cited by 414 (16 self)
- Add to MetaCart
Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) -a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
Face recognition using laplacianfaces
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... Abstract—We propose an appearance-based face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) wh ..."
Abstract
-
Cited by 389 (38 self)
- Add to MetaCart
(Show Context)
Abstract—We propose an appearance-based face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition. Index Terms—Face recognition, principal component analysis, linear discriminant analysis, locality preserving projections, face manifold, subspace learning. 1
Graph embedding and extension: A general framework for dimensionality reduction
- IEEE TRANS. PATTERN ANAL. MACH. INTELL
, 2007
"... Over the past few decades, a large family of algorithms—supervised or unsupervised; stemming from statistics or geometry theory—has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper ..."
Abstract
-
Cited by 271 (29 self)
- Add to MetaCart
(Show Context)
Over the past few decades, a large family of algorithms—supervised or unsupervised; stemming from statistics or geometry theory—has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
Recognizing Imprecisely Localized, Partially Occluded and Expression Variant Faces from a Single Sample per Class
, 2002
"... The classical way of attempting to solve the face (or object) recognition problem is by using large and representative datasets. In many applications though, only one sample per class is available to the system. In this contribution, we describe a probabilistic approach that is able to compensate fo ..."
Abstract
-
Cited by 211 (8 self)
- Add to MetaCart
The classical way of attempting to solve the face (or object) recognition problem is by using large and representative datasets. In many applications though, only one sample per class is available to the system. In this contribution, we describe a probabilistic approach that is able to compensate for imprecisely localized, partially occluded and expression variant faces even when only one single training sample per class is available to the system. To solve the localization problem, we find the subspace (within the feature space, e.g. eigenspace) that represents this error for each of the training images. To resolve the occlusion problem, each face is divided into k local regions which are analyzed in isolation. In contrast with other approaches, where a simple voting space is used, we present a probabilistic method that analyzes how "good" a local match is. To make the recognition system less sensitive to the differences between the facial expression displayed on the training and the testing images, we weight the results obtained on each local area on the bases of how much of this local area is affected by the expression displayed on the current test image.
The CAS-PEAL large-scale Chinese face dataBase and baseline evaluations
- JOINT RESEARCH & DEVELOPMENT LABORATORY, CAS
, 2004
"... The ICT-ISVISION Joint Research & Development Laboratory (JDL) for Face Recognition has constructed the CAS-PEAL face database, supported by National Hi-Tech Program and ISVISION Technologies Co., Ltd. The goals to create the PEAL face database include (1) providing the worldwide researchers of ..."
Abstract
-
Cited by 108 (7 self)
- Add to MetaCart
The ICT-ISVISION Joint Research & Development Laboratory (JDL) for Face Recognition has constructed the CAS-PEAL face database, supported by National Hi-Tech Program and ISVISION Technologies Co., Ltd. The goals to create the PEAL face database include (1) providing the worldwide researchers of FR community a large-scale face database for training and evaluating their algorithms; (2) facilitating the development of FR by providing large-scale face images with different sources of variations, especially Pose, Expression, Accessories, and Lighting (PEAL); (3) advancing the state-of-the-art face recognition technologies aiming at practical applications especially for the oriental. Currently, the CAS-PEAL face database contains 99,594 images of 1040 individuals (595 males and 445 females) with varying Pose, Expression, Accessory, and Lighting (PEAL). For each subject, 9 cameras spaced equally in a horizontal semicircular shelf are used to simultaneously capture images across different poses in one shot. Each subject is also asked to look up and down to capture 18 images in another two shots. We also considered 5 kinds of expressions, 6 kinds of accessories (3 pairs of glasses, and 3 caps), and 15 lighting directions. This face database is now partly made available (a subset named by CAS-PEAL-R1, containing
Face recognition from a single image per person: A survey
- PATTERN RECOGNITION
, 2006
"... One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques ..."
Abstract
-
Cited by 108 (6 self)
- Add to MetaCart
(Show Context)
One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious performance drop or even fail to work if only one training sample per person is available to the systems. This situation is called “one sample per person ” problem: given a stored database of faces, the goal is to identify a person from the database later in time in any different and unpredictable poses, lighting, etc from just one image. Such a task is very challenging for most current algorithms due to the extremely limited representative of training sample. Numerous techniques have been developed to attack this problem, and the purpose of this paper is to categorize and evaluate these algorithms. The prominent algorithms are described and critically analyzed. Relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed, and several promising directions for future research are also proposed in this paper.
Discriminative common vectors for face recognition
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2005
"... In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the Linear Discriminant Analysis (LDA) method cannot be applied directly. This problem is known as t ..."
Abstract
-
Cited by 107 (9 self)
- Add to MetaCart
In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the Linear Discriminant Analysis (LDA) method cannot be applied directly. This problem is known as the “small sample size” problem. In this paper, we propose a new face recognition method called the Discriminative Common Vector method based on a variation of Fisher’s Linear Discriminant Analysis for the small sample size case. Two different algorithms are given to extract the discriminative common vectors representing each person in the training set of the face database. One algorithm uses the within-class scatter matrix of the samples in the training set while the other uses the subspace methods and the Gram-Schmidt orthogonalization procedure to obtain the discriminative common vectors. Then, the discriminative common vectors are used for classification of new faces. The proposed method yields an optimal solution for maximizing the modified Fisher’s Linear Discriminant criterion given in the paper. Our test results show that the Discriminative Common Vector method is superior to other methods in terms of recognition accuracy, efficiency, and numerical stability.
Recent advances in visual and infrared face recognition—a review
- CVIU
, 2005
"... Abstract Face recognition is a rapidly growing research area due to increasing demands for security in commercial and law enforcement applications. This paper provides an up-to-date review of research efforts in face recognition techniques based on two-dimensional (2D) images in the visual and infr ..."
Abstract
-
Cited by 105 (9 self)
- Add to MetaCart
(Show Context)
Abstract Face recognition is a rapidly growing research area due to increasing demands for security in commercial and law enforcement applications. This paper provides an up-to-date review of research efforts in face recognition techniques based on two-dimensional (2D) images in the visual and infrared (IR) spectra. Face recognition systems based on visual images have reached a significant level of maturity with some practical success. However, the performance of visual face recognition may degrade under poor illumination conditions or for subjects of various skin colors. IR imagery represents a viable alternative to visible imaging in the search for a robust and practical identification system. While visual face recognition systems perform relatively reliably under controlled illumination conditions, thermal IR face recognition systems are advantageous when there is no control over illumination or for detecting disguised faces. Face recognition using 3D images is another active area of face recognition, which provides robust face recognition with changes in pose. Recent research has also demonstrated that the fusion of different imaging modalities and spectral components can improve the overall performance of face recognition.