Results 1  10
of
267
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 317 (31 self)
 Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, nonnegative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to stateoftheart performance in terms of speed and optimization for both small and large data sets.
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 284 (8 self)
 Add to MetaCart
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems, with tens of thousands of features and examples, can be solved in tens of seconds (assuming some sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve very large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warmstart techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.
Regularized estimation of large covariance matrices
 Ann. Statist
, 2008
"... This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → ..."
Abstract

Cited by 196 (14 self)
 Add to MetaCart
(Show Context)
This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → 0, and obtain explicit rates. The results are uniform over some fairly natural wellconditioned families of covariance matrices. We also introduce an analogue of the Gaussian white noise model and show that if the population covariance is embeddable in that model and wellconditioned, then the banded approximations produce consistent estimates of the eigenvalues and associated eigenvectors of the covariance matrix. The results can be extended to smooth versions of banding and to nonGaussian distributions with sufficiently short tails. A resampling approach is proposed for choosing the banding parameter in practice. This approach is illustrated numerically on both simulated and real data. 1. Introduction. Estimation
Covariance regularization by thresholding
, 2007
"... This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or subGa ..."
Abstract

Cited by 154 (11 self)
 Add to MetaCart
(Show Context)
This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or subGaussian, and (log p)/n → 0, and obtain explicit rates. The results are uniform over families of covariance matrices which satisfy a fairly natural notion of sparsity. We discuss an intuitive resampling scheme for threshold selection and prove a general crossvalidation result that justifies this approach. We also compare thresholding to other covariance estimators in simulations and on an example from climate data. 1. Introduction. Estimation
Convex and SemiNonnegative Matrix Factorizations
, 2008
"... We present several new variations on the theme of nonnegative matrix factorization (NMF). Considering factorizations of the form X = F GT, we focus on algorithms in which G is restricted to contain nonnegative entries, but allow the data matrix X to have mixed signs, thus extending the applicable ra ..."
Abstract

Cited by 109 (9 self)
 Add to MetaCart
We present several new variations on the theme of nonnegative matrix factorization (NMF). Considering factorizations of the form X = F GT, we focus on algorithms in which G is restricted to contain nonnegative entries, but allow the data matrix X to have mixed signs, thus extending the applicable range of NMF methods. We also consider algorithms in which the basis vectors of F are constrained to be convex combinations of the data points. This is used for a kernel extension of NMF. We provide algorithms for computing these new factorizations and we provide supporting theoretical analysis. We also analyze the relationships between our algorithms and clustering algorithms, and consider the implications for sparseness of solutions. Finally, we present experimental results that explore the properties of these new methods.
Optimal rates of convergence for covariance matrix estimation
 Ann. Statist
, 2010
"... Covariance matrix plays a central role in multivariate statistical analysis. Significant advances have been made recently on developing both theory and methodology for estimating large covariance matrices. However, a minimax theory has yet been developed. In this paper we establish the optimal rates ..."
Abstract

Cited by 93 (18 self)
 Add to MetaCart
Covariance matrix plays a central role in multivariate statistical analysis. Significant advances have been made recently on developing both theory and methodology for estimating large covariance matrices. However, a minimax theory has yet been developed. In this paper we establish the optimal rates of convergence for estimating the covariance matrix under both the operator norm and Frobenius norm. It is shown that optimal procedures under the two norms are different and consequently matrix estimation under the operator norm is fundamentally different from vector estimation. The minimax upper bound is obtained by constructing a special class of tapering estimators and by studying their risk properties. A key step in obtaining the optimal rate of convergence is the derivation of the minimax lower bound. The technical analysis requires new ideas that are quite different from those used in the more conventional function/sequence estimation problems. 1. Introduction. Suppose
High dimensional analysis of semidefinite relaxations for sparse principal component analysis
, 2008
"... Principal component analysis (PCA) is a classical method for dimensionality reduction based on extracting the dominant eigenvectors of the sample covariance matrix. However, PCA is well known to behave poorly in the “large p, small n ” setting, in which the problem dimension p is comparable to or la ..."
Abstract

Cited by 85 (4 self)
 Add to MetaCart
(Show Context)
Principal component analysis (PCA) is a classical method for dimensionality reduction based on extracting the dominant eigenvectors of the sample covariance matrix. However, PCA is well known to behave poorly in the “large p, small n ” setting, in which the problem dimension p is comparable to or larger than the sample size n. This paper studies PCA in this highdimensional regime, but under the additional assumption that the maximal eigenvector is sparse, say with at most k nonzero components. We analyze two computationally tractable methods for recovering the support of this maximal eigenvector: (a) a simple diagonal cutoff method, which transitions from success to failure as a function of the order parameter θdia(n, p, k) = n/[k 2 log(p − k)]; and (b) a more sophisticated semidefinite programming (SDP) relaxation, which succeeds once the order parameter θsdp(n, p, k) = n/[k log(p − k)] is larger than a critical threshold. Our results thus highlight an interesting tradeoff between computational and statistical efficiency in highdimensional inference.