Results 1 
6 of
6
On the Boundedness of Penalty Parameters in an Augmented Lagrangian Method with Constrained Subproblems
, 2011
"... Augmented Lagrangian methods are effective tools for solving largescale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When t ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Augmented Lagrangian methods are effective tools for solving largescale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large the subproblem is difficult, therefore the effectiveness of this approach is associated with boundedness of penalty parameters. In this paper it is proved that, under more natural assumptions than the ones up to now employed, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
GLOBAL CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS APPLIED TO OPTIMIZATION PROBLEMS WITH DEGENERATE CONSTRAINTS, INCLUDING PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS
, 2012
"... We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error bound condition for the feasible set (which is weaker than constraint qualifications), assuming that the iterates have some modest features of approximate local minimizers of the augmented Lagrangian. For MPCC, we first argue that even weak forms of general constraint qualifications that are suitable for convergence of the augmented Lagrangian methods, such as the recently proposed relaxed positive linear dependence condition, should not be expected to hold and thus special analysis is needed. We next obtain a rather complete picture, showing that under the usual in this context MPCClinear independence constraint qualification accumulation points of the iterates are guaranteed to be Cstationary for MPCC (better than weakly stationary), but in general need not be Mstationary (hence, neither strongly stationary). However, strong stationarity is guaranteed if the generated dual sequence is bounded, which we show to be the typical
Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
, 2012
"... In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In th ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results that guarantee optimality and/or feasibility up to any required precision will be provided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.
A REGULARIZED SQP METHOD WITH CONVERGENCE TO SECONDORDER OPTIMAL POINTS
, 2013
"... Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with illposed or degenerate nonlinear optimization problems. Recently, a regularized SQP me ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with illposed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method is formulated as a regularized SQP method with an implicit safeguarding strategy based on minimizing a boundconstrained primaldual augmented Lagrangian. Each iteration involves the solution of a regularized quadratic program (QP) that is equivalent to a strictly convex boundconstrained QP based on minimizing a quadratic model of the augmented Lagrangian. The solution of the QP subproblem defines a descent direction for a flexible line search that provides a sufficient decrease in a primaldual augmented Lagrangian merit function. Under certain conditions, the method is guaranteed to converge to a point satisfying the firstorder KarushKuhnTucker (KKT) conditions. In this paper, the regularized SQP method is extended to allow convergence to points satisfying certain secondorder KKT
Global Nonlinear Programming with possible infeasibility and finite termination
, 2012
"... In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In th ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results thatguaranteeoptimalityand/orfeasibilityuptoanyrequiredprecisionwillbeprovided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.
Spectral Projected Gradient methods: Review and Perspectives
, 2012
"... Over the last two decades, it has been observed that using the gradient vector as a search direction in largescale optimization may lead to efficient algorithms. The effectiveness relies on choosing the step lengths according to novel ideas that are related to the spectrum of the underlying local H ..."
Abstract
 Add to MetaCart
Over the last two decades, it has been observed that using the gradient vector as a search direction in largescale optimization may lead to efficient algorithms. The effectiveness relies on choosing the step lengths according to novel ideas that are related to the spectrum of the underlying local Hessian rather than related to the standard decrease in the objective function. A review of these socalled spectral projected gradient methods for convex constrained optimization is presented. To illustrate the performance of these lowcost schemes, an optimization problem on the set of positive definite matrices is described.