Results 1 - 10
of
1,278
Consensus Problems in Networks of Agents with Switching Topology and Time-Delays
, 2003
"... In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no time-delays, ii) networks with fixed topology and communication time-delays, and iii) max-consensus problems (or leader ..."
Abstract
-
Cited by 1052 (17 self)
- Add to MetaCart
In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no time-delays, ii) networks with fixed topology and communication time-delays, and iii) max-consensus problems (or leader determination) for groups of discrete-time agents. In each case, we introduce a linear/nonlinear consensus protocol and provide convergence analysis for the proposed distributed algorithm. Moreover, we establish a connection between the Fiedler eigenvalue of the information flow in a network (i.e. algebraic connectivity of the network) and the negotiation speed (or performance) of the corresponding agreement protocol. It turns out that balanced digraphs play an important role in addressing average-consensus problems. We introduce disagreement functions that play the role of Lyapunov functions in convergence analysis of consensus protocols. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.
Behavior-based Formation Control for Multi-robot Teams
- IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION
, 1997
"... New reactive behaviors that implement formations in multi-robot teams are presented and evaluated. The formation behaviors are integrated with other navigational behaviors to enable a robotic team to reach navigational goals, avoid hazards and simultaneously remain in formation. The behaviors are im ..."
Abstract
-
Cited by 645 (4 self)
- Add to MetaCart
New reactive behaviors that implement formations in multi-robot teams are presented and evaluated. The formation behaviors are integrated with other navigational behaviors to enable a robotic team to reach navigational goals, avoid hazards and simultaneously remain in formation. The behaviors are implemented in simulation, on robots in the laboratory and aboard DARPA's HMMWV-based Unmanned Ground Vehicles. The technique has been integrated with the Autonomous Robot Architecture (AuRA) and the UGV Demo II architecture. The results demonstrate the value of various types of formations in autonomous, human-led and communications-restricted applications, and their appropriateness in different types of task environments.
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
, 2006
"... In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in free-space and presence of multiple obstacles are considered. We present three flocking algorithms: two for free-flocking and one for constrained flocking. A compre ..."
Abstract
-
Cited by 412 (2 self)
- Add to MetaCart
(Show Context)
In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in free-space and presence of multiple obstacles are considered. We present three flocking algorithms: two for free-flocking and one for constrained flocking. A comprehensive analysis of the first two algorithms is provided. We demonstrate the first algorithm embodies all three rules of Reynolds. This is a formal approach to extraction of interaction rules that lead to the emergence of collective behavior. We show that the first algorithm generically leads to regular fragmentation, whereas the second and third algorithms both lead to flocking. A systematic method is provided for construction of cost functions (or collective potentials) for flocking. These collective potentials penalize deviation from a class of lattice-shape objects called αlattices. We use a multi-species framework for construction of collective potentials that consist of flock-members, or α-agents, and virtual agents associated with α-agents called β- and γ-agents. We show that migration of flocks can be performed using a peer-to-peer network of agents, i.e. “flocks need no leaders.” A “universal” definition of flocking for particle systems with similarities to Lyapunov stability is given. Several simulation results are provided that demonstrate performing 2-D and 3-D flocking, split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the proposed algorithms.
Cooperative mobile robotics: Antecedents and directions
, 1995
"... There has been increased research interest in systems composed of multiple autonomous mobile robots exhibiting collective behavior. Groups of mobile robots are constructed, with an aim to studying such issues as group architecture, resource conflict, origin of cooperation, learning, and geometric pr ..."
Abstract
-
Cited by 378 (3 self)
- Add to MetaCart
There has been increased research interest in systems composed of multiple autonomous mobile robots exhibiting collective behavior. Groups of mobile robots are constructed, with an aim to studying such issues as group architecture, resource conflict, origin of cooperation, learning, and geometric problems. As yet, few applications of collective robotics have been reported, and supporting theory is still in its formative stages. In this paper, we give a critical survey of existing works and discuss open problems in this field, emphasizing the various theoretical issues that arise in the study of cooperative robotics. We describe the intellectual heritages that have guided early research, as well as possible additions to the set of existing motivations. 1
Animating Human Athletics
, 1995
"... This paper describes algorithms for the animation of men and women performing three dynamic athletic behaviors: running, bicycling, and vaulting. We animate these behaviors using control algorithms that cause a physically realistic model to perform the desired maneuver. For example, control algorith ..."
Abstract
-
Cited by 348 (23 self)
- Add to MetaCart
(Show Context)
This paper describes algorithms for the animation of men and women performing three dynamic athletic behaviors: running, bicycling, and vaulting. We animate these behaviors using control algorithms that cause a physically realistic model to perform the desired maneuver. For example, control algorithms allow the simulated humans to maintain balance while moving their arms, to run or bicycle at a variety of speeds, and to perform a handspring vault. Algorithms for group behaviors allow a number of simulated bicyclists to ride as a group while avoiding simple patterns of obstacles. We add secondarymotion to the animations with springmass simulations of clothing driven by the rigid-body motion of the simulated human. For each simulation, we compare the computed motion to that of humans performing similar maneuvers both qualitatively through the comparison of real and simulated video images and quantitatively through the comparison of simulated and biomechanical data.
Artificial fishes: Physics, locomotion, perception, behavior
, 1994
"... physics-based modeling Abstract: This paper proposesa framework for animation that can achieve the intricacy of motion evident in certain natural ecosystems with minimal input from the animator. The realistic appearance, movement, and behavior of individual animals, as well as the patterns of behavi ..."
Abstract
-
Cited by 241 (17 self)
- Add to MetaCart
(Show Context)
physics-based modeling Abstract: This paper proposesa framework for animation that can achieve the intricacy of motion evident in certain natural ecosystems with minimal input from the animator. The realistic appearance, movement, and behavior of individual animals, as well as the patterns of behavior evident in groups of animals fall within the scope of the framework. Our approach to emulating this level of natural complexity is to model each animal holistically as an autonomous agent situated in its physical world. To demonstrate the approach, we develop a physics-based, virtual marine world. The world is inhabited by artificial fishes that can swim hydrodynamically in simulated water through the motor control of internal muscles that motivate fins. Their repertoire of behaviors relies on their perception of the dynamic environment. As in nature, the detailed motions of artificial fishes in their virtual habitat are not entirely predictable because they are not scripted. 1
Cooperative Multi-Agent Learning: The State of the Art
- Autonomous Agents and Multi-Agent Systems
, 2005
"... Cooperative multi-agent systems are ones in which several agents attempt, through their interaction, to jointly solve tasks or to maximize utility. Due to the interactions among the agents, multi-agent problem complexity can rise rapidly with the number of agents or their behavioral sophistication. ..."
Abstract
-
Cited by 182 (8 self)
- Add to MetaCart
(Show Context)
Cooperative multi-agent systems are ones in which several agents attempt, through their interaction, to jointly solve tasks or to maximize utility. Due to the interactions among the agents, multi-agent problem complexity can rise rapidly with the number of agents or their behavioral sophistication. The challenge this presents to the task of programming solutions to multi-agent systems problems has spawned increasing interest in machine learning techniques to automate the search and optimization process. We provide a broad survey of the cooperative multi-agent learning literature. Previous surveys of this area have largely focused on issues common to specific subareas (for example, reinforcement learning or robotics). In this survey we attempt to draw from multi-agent learning work in a spectrum of areas, including reinforcement learning, evolutionary computation, game theory, complex systems, agent modeling, and robotics. We find that this broad view leads to a division of the work into two categories, each with its own special issues: applying a single learner to discover joint solutions to multi-agent problems (team learning), or using multiple simultaneous learners, often one per agent (concurrent learning). Additionally, we discuss direct and indirect communication in connection with learning, plus open issues in task decomposition, scalability, and adaptive dynamics. We conclude with a presentation of multi-agent learning problem domains, and a list of multi-agent learning resources. 1
Interaction and Intelligent Behavior
, 1994
"... This thesis addresses situated, embodied agents interacting in complex domains. It focuses on two problems: 1) synthesis and analysis of intelligent group behavior, and 2) learning in complex group environments. Basic behaviors, control laws that cluster constraints to achieve particular goals and h ..."
Abstract
-
Cited by 175 (20 self)
- Add to MetaCart
This thesis addresses situated, embodied agents interacting in complex domains. It focuses on two problems: 1) synthesis and analysis of intelligent group behavior, and 2) learning in complex group environments. Basic behaviors, control laws that cluster constraints to achieve particular goals and have the appropriate compositional properties, are proposed as effective primitives for control and learning. The thesis describes the process of selecting such basic behaviors, formally specifying them, algorithmically implementing them, and empirically evaluating them. All of the proposed ideas are validated with a group of up to 20 mobile robots using a basic behavior set consisting of: safe--wandering, following, aggregation, dispersion, and homing. The set of basic behaviors acts as a substrate for achieving more complex high--level goals and tasks. Two behavior combination operators are introduced, and verified by combining subsets of the above basic behavior set to implement collective flocking, foraging, and docking. A methodology is introduced for automatically constructing higher--level behaviors
Physically Based Deformable Models in Computer Graphics
- EUROGRAPHICS 2005 STAR – STATE OF THE ART REPORT
, 2005
"... Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motio ..."
Abstract
-
Cited by 167 (3 self)
- Add to MetaCart
Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motion pictures and video games. In this paper, we present the most significant contributions of the past decade, which produce such impressive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass-spring systems, meshfree methods, coupled particle systems and reduced deformable models based on modal analysis. For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application, such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive entertainment and fluid/smoke animation, and also suggest areas for future research.