Results 1  10
of
10
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1184 (31 self)
 Add to MetaCart
We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the ncalculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the ncalculus of higherorder functions (the Icalculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctionsi.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on workinprogress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed.
Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting
, 2004
"... Motivated by recent work on the derivation of labelled transitions and bisimulation congruences from unlabelled reaction rules, we show how to solve this problem in the DPO (doublepushout) approach to graph rewriting. Unlike in previous approaches, we consider graphs as objects, instead of arrows, ..."
Abstract

Cited by 76 (16 self)
 Add to MetaCart
Motivated by recent work on the derivation of labelled transitions and bisimulation congruences from unlabelled reaction rules, we show how to solve this problem in the DPO (doublepushout) approach to graph rewriting. Unlike in previous approaches, we consider graphs as objects, instead of arrows, of the category under consideration. This allows us to present a very simple way of deriving labelled transitions (called rewriting steps with borrowed context) which smoothly integrates with the DPO approach, has a very constructive nature and requires only a minimum of category theory. The core part of this paper is the proof sketch that the bisimilarity based on rewriting with borrowed contexts is a congruence relation.
Bigraphs and Mobile Processes (revised)
, 2004
"... A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and comm ..."
Abstract

Cited by 66 (7 self)
 Add to MetaCart
A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and communicate. In this memorandum we develop their static and dynamic theory. In Part I we illustrate...
Pure bigraphs: structure and dynamics
, 2005
"... Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a c ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a constituent of bigraphs, this paper is a devoted to pure bigraphs, which in turn underlie various more refined forms. Elsewhere it is shown that behavioural analysis for Petri nets, πcalculus and mobile ambients can all be recovered in the uniform framework of bigraphs. The paper first develops the dynamic theory of an abstract structure, a wide reactive system (Wrs), of which a Brs is an instance. In this context, labelled transitions are defined in such a way that the induced bisimilarity is a congruence. This work is then specialised to Brss, whose graphical structure allows many refinements of the theory. The latter part of the paper emphasizes bigraphical theory that is relevant to the treatment of dynamics via labelled transitions. As a running example, the theory is applied to finite pure CCS, whose resulting transition system and bisimilarity are analysed in detail. The paper also mentions briefly the use of bigraphs to model pervasive computing and
Axioms For Bigraphical Structure
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2005
"... This paper axiomatises the structure of bigraphs, and proves that the resulting theory is complete. Bigraphs are graphs with double structure, representing locality and connectivity. They have been shown to represent dynamic theories for the #calculus, mobile ambients and Petri nets, in a way th ..."
Abstract

Cited by 41 (8 self)
 Add to MetaCart
This paper axiomatises the structure of bigraphs, and proves that the resulting theory is complete. Bigraphs are graphs with double structure, representing locality and connectivity. They have been shown to represent dynamic theories for the #calculus, mobile ambients and Petri nets, in a way that is faithful to each of those models of discrete behaviour. While the main purpose of bigraphs is to understand mobile systems, a prerequisite for this understanding is a wellbehaved theory of the structure of states in such systems. The algebra of bigraph structure is surprisingly simple, as the paper demonstrates; this is because bigraphs treat locality and connectivity orthogonally
Transition systems, link graphs and Petri nets
, 2004
"... A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavi ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be congruential. The theory rests upon the notion of relative pushout previously introduced by the authors. The framework
Adhesive HighLevel Replacement Systems: A New Categorical Framework for Graph Transformation
, 2006
"... Adhesive highlevel replacement (HLR) systems are introduced as a new categorical framework for graph transformation in the double pushout (DPO) approach, which combines the wellknown concept of HLR systems with the new concept of adhesive categories introduced by Lack and Sobociński. In this pa ..."
Abstract

Cited by 21 (12 self)
 Add to MetaCart
Adhesive highlevel replacement (HLR) systems are introduced as a new categorical framework for graph transformation in the double pushout (DPO) approach, which combines the wellknown concept of HLR systems with the new concept of adhesive categories introduced by Lack and Sobociński. In this paper we show that most of the HLR properties, which had been introduced to generalize some basic results from the category of graphs to highlevel structures, are valid already in adhesive HLR categories. This leads to a smooth categorical theory of HLR systems which can be applied to a large variety of graphs and other visual models. As a main new result in a categorical framework we show the Critical Pair Lemma for the local confluence of transformations. Moreover we present a new version of embeddings and extensions for transformations in our framework of adhesive HLR systems.
Analysis and Verification of Systems with Dynamically Evolving Structure
, 2004
"... This thesis is concerned with verification and analysis techniques for software systems characterized by dynamically evolving structure, such as dynamic creation and deletion of objects, mobility and variable topology. Examples for such systems are pointer structures, objectbased systems and commun ..."
Abstract
 Add to MetaCart
This thesis is concerned with verification and analysis techniques for software systems characterized by dynamically evolving structure, such as dynamic creation and deletion of objects, mobility and variable topology. Examples for such systems are pointer structures, objectbased systems and communication protocols in which the number of participants is not constant. The approach taken here is based on graph transformation systems, an intuitive and—at the same time—powerful formalism for the modelling of distributed and mobile systems. So far there exists comparatively little research concerning the verification of graph rewriting. We will—in the first part of this thesis—introduce graph transformations and give an overview of existing analysis and verification methods, with a focus on the verification of systems with dynamically evolving structure. Then we will describe three original lines of research: behavioural equivalences, type systems and approximation by Petri nets, all of them concerned with the analysis of
Edinburgh Research Explorer
, 2004
"... Axioms for bigraphical structure Citation for published version: ..."
(Show Context)
Edinburgh Research Explorer
"... Publisher's PDF, also known as Version of record ..."
(Show Context)