Results 1  10
of
42
The Quadratic Assignment Problem
 TO APPEAR IN THE HANDBOOK OF COMBINATORIAL OPTIMIZATION
"... This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, an ..."
Abstract

Cited by 182 (3 self)
 Add to MetaCart
This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadratic assignment problem, and discusses the relationship between the QAP and other well known combinatorial optimization problems, e.g. the traveling salesman problem, the graph partitioning problem, etc.
Some Applications of Laplace Eigenvalues of Graphs
 GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, VOLUME 497 OF NATO ASI SERIES C
, 1997
"... In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of ..."
Abstract

Cited by 129 (0 self)
 Add to MetaCart
In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of graphs, the maxcut problem and its relation to semidefinite programming, rapid mixing of Markov chains, and to extensions of the results to infinite graphs.
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 114 (16 self)
 Add to MetaCart
(Show Context)
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Handbook of semidefinite programming
"... Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, con ..."
Abstract

Cited by 89 (3 self)
 Add to MetaCart
Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity was spurred by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interiorpoint algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. This book includes nineteen chapters on the theory, algorithms, and applications of semidefinite programming. Written by the leading experts on the subject, it offers an advanced and broad overview of the current state of the field. The coverage is somewhat less comprehensive, and the overall level more advanced, than we had planned at the start of the project. In order to finish the book in a timely fashion, we have had to abandon hopes for separate chapters on some important topics (such as a discussion of SDP algorithms in the
Semidefinite Programming Relaxations For The Quadratic Assignment Problem
, 1998
"... Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP re ..."
Abstract

Cited by 86 (23 self)
 Add to MetaCart
Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualification always fails for the primal problem. Although there is no duality gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the geometrical structure of the relaxation, we are able to find projected SDP relaxations. These new relaxations, and their duals, satisfy the Slater constraint qualification, and so can be solved numerically using primaldual interiorpoint methods. For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systems which arise when finding the Newton direction. The preconditioner is found by exploiting th...
LargeScale Optimization of Eigenvalues
 SIAM J. Optimization
, 1991
"... Optimization problems involving eigenvalues arise in many applications. Let x be a vector of real parameters and let A(x) be a continuously differentiable symmetric matrix function of x. We consider a particular problem which occurs frequently: the minimization of the maximum eigenvalue of A(x), ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
(Show Context)
Optimization problems involving eigenvalues arise in many applications. Let x be a vector of real parameters and let A(x) be a continuously differentiable symmetric matrix function of x. We consider a particular problem which occurs frequently: the minimization of the maximum eigenvalue of A(x), subject to linear constraints and bounds on x. The eigenvalues of A(x) are not differentiable at points x where they coalesce, so the optimization problem is said to be nonsmooth. Furthermore, it is typically the case that the optimization objective tends to make eigenvalues coalesce at a solution point. There are three main purposes of the paper. The first is to present a clear and selfcontained derivation of the Clarke generalized gradient of the max eigenvalue function in terms of a "dual matrix". The second purpose is to describe a new algorithm, based on the ideas of a previous paper by the author (SIAM J. Matrix Anal. Appl. 9 (1988) 256268), which is suitable for solving l...
Derivatives of Spectral Functions
, 1996
"... A spectral function of a Hermitian matrix X is a function which depends only on the eigenvalues of X , 1 (X) 2 (X) : : : n (X), and hence may be written f( 1 (X); 2 (X); : : : ; n (X)) for some symmetric function f . Such functions appear in a wide variety of matrix optimization problems. We ..."
Abstract

Cited by 68 (13 self)
 Add to MetaCart
A spectral function of a Hermitian matrix X is a function which depends only on the eigenvalues of X , 1 (X) 2 (X) : : : n (X), and hence may be written f( 1 (X); 2 (X); : : : ; n (X)) for some symmetric function f . Such functions appear in a wide variety of matrix optimization problems. We give a simple proof that this spectral function is differentiable at X if and only if the function f is differentiable at the vector (X), and we give a concise formula for the derivative. We then apply this formula to deduce an analogous expression for the Clarke generalized gradient of the spectral function. A similar result holds for real symmetric matrices. 1 Introduction and notation Optimization problems involving a symmetric matrix variable, X say, frequently involve symmetric functions of the eigenvalues of X in the objective or constraints. Examples include the maximum eigenvalue of X, or log(det X) (for positive definite X), or eigenvalue constraints such as positive semidefinit...
Convex analysis on the Hermitian matrices
 SIAM Journal on Optimization
, 1996
"... There is growing interest in optimization problems with real symmetric matrices as variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric convex functions ..."
Abstract

Cited by 63 (19 self)
 Add to MetaCart
(Show Context)
There is growing interest in optimization problems with real symmetric matrices as variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric convex functions of the eigenvalues. A new approach to this characterization is given, via a simple Fenchel conjugacy formula. We then apply this formula to derive expressions for subdifferentials, and to study duality relationships for convex optimization problems with positive semidefinite matrices as variables. Analogous results hold for Hermitian matrices. Key Words: convexity, matrix function, Schur convexity, Fenchel duality, subdifferential, unitarily invariant, spectral function, positive semidefinite programming, quasiNewton update. AMS 1991 Subject Classification: Primary 15A45 49N15 Secondary 90C25 65K10 1 Introduction A matrix norm on the n \Theta n complex matrices is called unitarily inv...
Exact And Approximate Nondeterministic TreeSearch Procedures For The Quadratic Assignment Problem
, 1998
"... This paper introduces two new techniques for solving the Quadratic Assignment Problem. The first is a heuristic technique, defined in accordance to the Ant System metaphor, and includes as a distinctive feature the use of a new lower bound at each constructive step. The second is a branch and bound ..."
Abstract

Cited by 61 (5 self)
 Add to MetaCart
This paper introduces two new techniques for solving the Quadratic Assignment Problem. The first is a heuristic technique, defined in accordance to the Ant System metaphor, and includes as a distinctive feature the use of a new lower bound at each constructive step. The second is a branch and bound exact approach, containing some elements introduced in the Ant algorithm. Computational results prove the effectiveness of both approaches.
A New Lower Bound via Projection for the Quadratic Assignment Problem
 Mathematics of Operations Research
, 1992
"... New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making efficient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound ..."
Abstract

Cited by 58 (16 self)
 Add to MetaCart
(Show Context)
New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making efficient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound is easy to implement and often provides high quality bounds under an acceptable computational effort. Key Words: quadratic assignment problem, lower bounds, relaxations, orthogonal projection, eigenvalue bounds. 0 The authors would like to thank the Natural Sciences and Engineering Research Council of Canada and the Austrian Science Foundatation (FWF) for their support. 1 Introduction The Quadratic Assignment Problem QAP is a generic model for various problems arising e.g. in location theory, VLSI design, facility layout, keyboard design and many other areas, see [1] for a recent survey on the QAP. Formally the QAP consists of minimizing f(X) = tr(AXB t + C)X t over the set of permu...