Results 11 - 20
of
135
Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing
- SIAM J. IMAGING SCI
, 2008
"... We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 insta ..."
Abstract
-
Cited by 84 (15 self)
- Add to MetaCart
(Show Context)
We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrix-vector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixed-point continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.
ATOMS OF ALL CHANNELS, UNITE! AVERAGE CASE ANALYSIS OF MULTI-CHANNEL SPARSE RECOVERY USING GREEDY ALGORITHMS
, 2007
"... ..."
FIXED-POINT CONTINUATION FOR ℓ1-MINIMIZATION: METHODOLOGY AND CONVERGENCE
"... We present a framework for solving large-scale ℓ1-regularized convex minimization problem: min �x�1 + µf(x). Our approach is based on two powerful algorithmic ideas: operator-splitting and continuation. Operator-splitting results in a fixed-point algorithm for any given scalar µ; continuation refers ..."
Abstract
-
Cited by 68 (10 self)
- Add to MetaCart
We present a framework for solving large-scale ℓ1-regularized convex minimization problem: min �x�1 + µf(x). Our approach is based on two powerful algorithmic ideas: operator-splitting and continuation. Operator-splitting results in a fixed-point algorithm for any given scalar µ; continuation refers to approximately following the path traced by the optimal value of x as µ increases. In this paper, we study the structure of optimal solution sets; prove finite convergence for important quantities; and establish q-linear convergence rates for the fixed-point algorithm applied to problems with f(x) convex, but not necessarily strictly convex. The continuation framework, motivated by our convergence results, is demonstrated to facilitate the construction of practical algorithms.
Stability results for random sampling of sparse trigonometric polynomials
, 2006
"... Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of non-zero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that ..."
Abstract
-
Cited by 65 (17 self)
- Add to MetaCart
(Show Context)
Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of non-zero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that recovery both by a BP variant and by OMP is stable under perturbation of the samples values by noise. For BP in addition, the stability result is extended to (non-sparse) trigonometric polynomials that can be well-approximated by sparse ones. The theoretical findings are illustrated by numerical experiments. Key Words: random sampling, trigonometric polynomials, Orthogonal Matching Pursuit, Basis Pursuit, compressed sensing, stability under noise, fast Fourier transform, non-equispaced
Sparse signal detection from incoherent projections
- in IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), III
, 2006
"... Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating ..."
Abstract
-
Cited by 54 (14 self)
- Add to MetaCart
(Show Context)
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
Detection and Estimation with Compressive Measurements
, 2006
"... The recently introduced theory of compressed sensing enables the reconstruction of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquist rate samples. Interestingly, it has be ..."
Abstract
-
Cited by 49 (5 self)
- Add to MetaCart
The recently introduced theory of compressed sensing enables the reconstruction of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquist rate samples. Interestingly, it has been shown that random projections are a satisfactory measurement scheme. This has inspired the design of physical systems that directly implement similar measurement schemes. However, despite the intense focus on the reconstruction of signals, many (if not most) signal processing problems do not require a full reconstruction of the signal – we are often interested only in solving some sort of detection problem or in the estimation of some function of the data. In this report, we show that the compressed sensing framework is useful for a wide range of statistical inference tasks. In particular, we demonstrate how to solve a variety of signal detection and estimation problems given the measurements without ever reconstructing the signals themselves. We provide theoretical bounds along with experimental results. 1
Sparse Recovery from Combined Fusion Frame Measurements
- IEEE Trans. Inform. Theory
"... Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the success of new acquisition and processing techniques such as Compressed Sensing (CS). Fusion frames are very rich new signal representation methods that use collections of subspaces instead ..."
Abstract
-
Cited by 43 (12 self)
- Add to MetaCart
(Show Context)
Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the success of new acquisition and processing techniques such as Compressed Sensing (CS). Fusion frames are very rich new signal representation methods that use collections of subspaces instead of vectors to represent signals. This work combines these exciting fields to introduce a new sparsity model for fusion frames. Signals that are sparse under the new model can be compressively sampled and uniquely reconstructed in ways similar to sparse signals using standard CS. The combination provides a promising new set of mathematical tools and signal models useful in a variety of applications. With the new model, a sparse signal has energy in very few of the subspaces of the fusion frame, although it does not need to be sparse within each of the subspaces it occupies. This sparsity model is captured using a mixed ℓ1/ℓ2 norm for fusion frames. A signal sparse in a fusion frame can be sampled using very few random projections and exactly reconstructed using a convex optimization that minimizes this mixed ℓ1/ℓ2 norm. The provided sampling conditions generalize coherence and RIP conditions used in standard CS theory. It is demonstrated that they are sufficient to guarantee sparse recovery of any signal sparse in our model. Moreover, an average case analysis is provided using a probability model on the sparse signal that shows that under very mild conditions the probability of recovery failure decays exponentially with increasing dimension of the subspaces. Index Terms
Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice
"... Abstract—Compressive sensing provides a framework for recovering sparse signals of length N from M ≪ N measurements. If the measurements contain noise bounded by ɛ, then standard algorithms recover sparse signals with error at most Cɛ. However, these algorithms perform suboptimally when the measurem ..."
Abstract
-
Cited by 40 (2 self)
- Add to MetaCart
(Show Context)
Abstract—Compressive sensing provides a framework for recovering sparse signals of length N from M ≪ N measurements. If the measurements contain noise bounded by ɛ, then standard algorithms recover sparse signals with error at most Cɛ. However, these algorithms perform suboptimally when the measurement noise is also sparse. This can occur in practice due to shot noise, malfunctioning hardware, transmission errors, or narrowband interference. We demonstrate that a simple algorithm, which we dub Justice Pursuit (JP), can achieve exact recovery from measurements corrupted with sparse noise. The algorithm handles unbounded errors, has no input parameters, and is easily implemented via standard recovery techniques. I.
Spectral Compressive Sensing
, 2010
"... Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency do ..."
Abstract
-
Cited by 39 (5 self)
- Add to MetaCart
(Show Context)
Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency domain. In practical applications, the standard frequency domain signal representation is the discrete Fourier transform (DFT). Unfortunately, the DFT coefficients of a frequency-sparse signal are themselves sparse only in the contrived case where the sinusoid frequencies are integer multiples of the DFT’s fundamental frequency. As a result, practical DFT-based CS acquisition and recovery of smooth signals does not perform nearly as well as one might expect. In this paper, we develop a new spectral compressive sensing (SCS) theory for general frequency-sparse signals. The key ingredients are an over-sampled DFT frame, a signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter estimation algorithms from the field of spectrum estimation. Using peridogram and eigen-analysis based spectrum estimates (e.g., MUSIC), our new SCS algorithms significantly outperform the current state-of-the-art CS algorithms while providing provable bounds on the number of measurements required for stable recovery.