Results 1  10
of
400
Which Problems Have Strongly Exponential Complexity?
 Journal of Computer and System Sciences
, 1998
"... For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF) t ..."
Abstract

Cited by 249 (9 self)
 Add to MetaCart
(Show Context)
For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF) that preserves subexponential complexity. We show that CircuitSAT is SERFcomplete for all NPsearch problems, and that for any fixed k, kSAT, kColorability, kSet Cover, Independent Set, Clique, Vertex Cover, are SERFcomplete for the class SNP of search problems expressible by second order existential formulas whose first order part is universal. In particular, subexponential complexity for any one of the above problems implies the same for all others. We also look at the issue of proving strongly exponential lower bounds for AC 0 ; that is, bounds of the form 2 \Omega\Gamma n) . This problem is even open for depth3 circuits. In fact, such a bound for depth3 circuits with even l...
Improved Steiner Tree Approximation in Graphs
, 2000
"... The Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph containing a given subset of the vertices (terminals). We present a new polynomialtime heuristic with an approximation ratio approaching 1 + 2 1:55, which improves upon the previously bestknown approximation ..."
Abstract

Cited by 225 (6 self)
 Add to MetaCart
(Show Context)
The Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph containing a given subset of the vertices (terminals). We present a new polynomialtime heuristic with an approximation ratio approaching 1 + 2 1:55, which improves upon the previously bestknown approximation algorithm of [10] with performance ratio 1:59.
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to ..."
Abstract

Cited by 194 (15 self)
 Add to MetaCart
(Show Context)
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
Efficient Algorithms for Online Decision Problems
 J. Comput. Syst. Sci
, 2003
"... In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when t ..."
Abstract

Cited by 190 (3 self)
 Add to MetaCart
In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when there are exponentially many possible decisions. However, the naive application of these algorithms is inefficient for such large problems. For some problems with nice structure, specialized efficient solutions have been developed [10, 16, 17, 6, 3].
Guillotine subdivisions approximate polygonal subdivisions: Part II  A simple polynomialtime approximation scheme for geometric kMST, TSP, and related problems
, 1996
"... this paper, thereby achieving essentially the same results that we report here, using decomposition schemes that are somewhat similar to our own. Arora's remarkable results predate this paper by several weeks, and his discovery was done independently of this work. 2 mGuillotine Subdivisions ..."
Abstract

Cited by 187 (12 self)
 Add to MetaCart
(Show Context)
this paper, thereby achieving essentially the same results that we report here, using decomposition schemes that are somewhat similar to our own. Arora's remarkable results predate this paper by several weeks, and his discovery was done independently of this work. 2 mGuillotine Subdivisions
A polylogarithmic approximation algorithm for the group Steiner tree problem
 Journal of Algorithms
, 2000
"... The group Steiner tree problem is a generalization of the Steiner tree problem where we ae given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimumweight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich a ..."
Abstract

Cited by 150 (9 self)
 Add to MetaCart
(Show Context)
The group Steiner tree problem is a generalization of the Steiner tree problem where we ae given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimumweight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich and Widmayer and finds applications in VLSI design. The group Steiner tree problem generalizes the set covering problem, and is therefore at least as had. We give a randomized O(log 3 n log k)approximation algorithm for the group Steiner tree problem on an nnode graph, where k is the number of groups. The best previous ink)v/ (Bateman, Helvig, performance guarantee was (1 +  Robins and Zelikovsky).
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 117 (12 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear programming and related problems, and LPtype problems and their efficient solution. We then describe a variety of applications of these and other techniques to numerous problems in geometric optimization, including facility location, proximity problems, statistical estimators and metrology, placement and intersection of polygons and polyhedra, and ray shooting and other querytype problems.
Algorithms for Facility Location Problems with Outliers (Extended Abstract)
 In Proceedings of the 12th Annual ACMSIAM Symposium on Discrete Algorithms
, 2000
"... ) Moses Charikar Samir Khuller y David M. Mount z Giri Narasimhan x Abstract Facility location problems are traditionally investigated with the assumption that all the clients are to be provided service. A significant shortcoming of this formulation is that a few very distant clients, called outlier ..."
Abstract

Cited by 90 (9 self)
 Add to MetaCart
) Moses Charikar Samir Khuller y David M. Mount z Giri Narasimhan x Abstract Facility location problems are traditionally investigated with the assumption that all the clients are to be provided service. A significant shortcoming of this formulation is that a few very distant clients, called outliers, can exert a disproportionately strong influence over the final solution. In this paper we explore a generalization of various facility location problems (Kcenter, Kmedian, uncapacitated facility location etc) to the case when only a specified fraction of the customers are to be served. What makes the problems harder is that we have to also select the subset that should get service. We provide generalizations of various approximation algorithms to deal with this added constraint. 1 Introduction The facility location problem and the related clustering problems, kmedian and kcenter, are widely studied in operations research and computer science [3, 7, 22, 24, 32]. Typically in...
Networked SlepianWolf: Theory, Algorithms and Scaling Laws
 IEEE Transactions on Information Theory
, 2003
"... Consider a set of correlated sources located at the nodes of a network, and a set of sinks that are the destinations for some of the sources. We consider the minimization of cost functions which are the product of a function of the rate and a function of the path weight. We consider both the data ..."
Abstract

Cited by 90 (8 self)
 Add to MetaCart
(Show Context)
Consider a set of correlated sources located at the nodes of a network, and a set of sinks that are the destinations for some of the sources. We consider the minimization of cost functions which are the product of a function of the rate and a function of the path weight. We consider both the data gathering scenario, which is relevant in sensor networks, and general tra#c matrices, relevant for general networks. The minimization is achieved by jointly optimizing (a) the transmission structure, which we show consists in general of a superposition of trees from each of the source nodes to its corresponding sink nodes, and (b) the rate allocation across the source nodes, which is done by SlepianWolf coding. We show that the overall minimization can be achieved in two concatenated steps.
Parameterized Complexity: A Framework for Systematically Confronting Computational Intractability
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1997
"... In this paper we give a programmatic overview of parameterized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how fixedparameter tractability techniques can deliver practical algorithms in two different ways: (1) by ..."
Abstract

Cited by 85 (16 self)
 Add to MetaCart
(Show Context)
In this paper we give a programmatic overview of parameterized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how fixedparameter tractability techniques can deliver practical algorithms in two different ways: (1) by providing useful exact algorithms for small parameter ranges, and (2) by providing guidance in the design of heuristic algorithms. In particular, we describe an improved FPT kernelization algorithm for Vertex Cover, a practical FPT algorithm for the Maximum Agreement Subtree (MAST) problem parameterized by the number of species to be deleted, and new general heuristics for these problems based on FPT techniques. In the course of making this overview, we also investigate some structural and hardness issues. We prove that an important naturally parameterized problem in artificial intelligence, STRIPS Planning (where the parameter is the size of the plan) is complete for W [1]. As a corollary, this implies that kStep Reachability for Petri Nets is complete for W [1]. We describe how the concept of treewidth can be applied to STRIPS Planning and other problems of logic to obtain FPT results. We describe a surprising structural result concerning the top end of the parameterized complexity hierarchy: the naturally parameterized Graph kColoring problem cannot be resolved with respect to XP either by showing membership in XP, or by showing hardness for XP without settling the P = NP question one way or the other.