Results 1  10
of
328
Robust Recovery of Signals From a Structured Union of Subspaces
, 2008
"... Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structu ..."
Abstract

Cited by 221 (47 self)
 Add to MetaCart
(Show Context)
Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structured signal models, in which x lies in a union of subspaces. In this paper we develop a general framework for robust and efficient recovery of such signals from a given set of samples. More specifically, we treat the case in which x lies in a sum of k subspaces, chosen from a larger set of m possibilities. The samples are modelled as inner products with an arbitrary set of sampling functions. To derive an efficient and robust recovery algorithm, we show that our problem can be formulated as that of recovering a blocksparse vector whose nonzero elements appear in fixed blocks. We then propose a mixed ℓ2/ℓ1 program for block sparse recovery. Our main result is an equivalence condition under which the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block restricted isometry property (RIP), which is a generalization of the standard RIP used extensively in the context of compressed sensing. Based on RIP we also prove stability of our approach in the presence of noise and modeling errors. A special case of our framework is that of recovering multiple measurement vectors (MMV) that share a joint sparsity pattern. Adapting our results to this context leads to new MMV recovery methods as well as equivalence conditions under which the entire set can be determined efficiently.
Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets StrangFix
, 2006
"... ..."
ForWaRD: FourierWavelet Regularized Deconvolution for IllConditioned Systems
 IEEE Trans. on Signal Processing
, 2002
"... We propose an efficient, hybrid FourierWavelet Regularized Deconvolution (ForWaRD) al gorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's sparse representation of the colored noise i ..."
Abstract

Cited by 113 (2 self)
 Add to MetaCart
(Show Context)
We propose an efficient, hybrid FourierWavelet Regularized Deconvolution (ForWaRD) al gorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's sparse representation of the colored noise inherent in deconvolution, while the wavelet shrinkage exploits the wavelet do main's sparse representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approxi mate meansquarederror (MSE) metric and find that signals with sparser wavelet representa tions require less Fourier shrinkage. ForWaRD is applicable to all illconditioned deconvolution problems, unlike the purely waveletbased Wavelet Vaguelette Deconvolution (WVD), and its es timate features minimal ringing, unlike purely Fourierbased Wiener deconvolution. We analyze ForWaRD's MSE decay rate as the number of samples increases and demonstrate its improved performance compared to the optimal WVD over a wide range of practical samplelengths.
Structured compressed sensing: From theory to applications
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract

Cited by 104 (16 self)
 Add to MetaCart
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
A chronology of interpolation: From ancient astronomy to modern signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper presents a chronological overview of the developments in interpolation theory, from the earliest times to the present date. It brings out the connections between the results obtained in different ages, thereby putting the techniques currently used in signal and image processing into histo ..."
Abstract

Cited by 104 (0 self)
 Add to MetaCart
(Show Context)
This paper presents a chronological overview of the developments in interpolation theory, from the earliest times to the present date. It brings out the connections between the results obtained in different ages, thereby putting the techniques currently used in signal and image processing into historical perspective. A summary of the insights and recommendations that follow from relatively recent theoretical as well as experimental studies concludes the presentation. Keywords—Approximation, convolutionbased interpolation, history, image processing, polynomial interpolation, signal processing, splines. “It is an extremely useful thing to have knowledge of the true origins of memorable discoveries, especially those that have been found not by accident but by dint of meditation. It is not so much that thereby history may attribute to each man his own discoveries and others should be encouraged to earn like commendation, as that the art of making discoveries should be extended by considering noteworthy examples of it. ” 1 I.
Sampling and reconstruction of signals with finite rate of innovation in the presence of noise
 IEEE Transactions on Signal Processing
, 2005
"... Recently, it was shown that it is possible to develop exact sampling schemes for a large class of parametric nonbandlimited signals, namely, certain signals of finite rate of innovation [24]. A common feature of such signals is that they have a finite number of degrees of freedom per unit of time an ..."
Abstract

Cited by 78 (2 self)
 Add to MetaCart
(Show Context)
Recently, it was shown that it is possible to develop exact sampling schemes for a large class of parametric nonbandlimited signals, namely, certain signals of finite rate of innovation [24]. A common feature of such signals is that they have a finite number of degrees of freedom per unit of time and can be reconstructed from a finite number of uniform samples. In order to prove sampling theorems, Vetterli et al. considered the case of deterministic, noiseless signals, and developed algebraic methods that lead to perfect reconstruction. However, when noise is present, many of those schemes can become illconditioned. In this paper, we revisit the problem of sampling and reconstruction of signals with finite rate of innovation and propose improved, more robust methods that have better numerical conditioning in the presence of noise and yield more accurate reconstruction. We analyze in detail a signal made up of a stream of Diracs and develop algorithmic tools that will be used as a basis in all constructions. While some of the techniques have been already encountered in the spectral estimation framework, we further explore preconditioning methods that lead to improved resolution performance in the case when the signal contains closely spaced components. For classes of periodic signals, such as piecewise polynomials and nonuniform splines, we propose novel algebraic approaches that solve the sampling problem in the Laplace domain, after appropriate windowing. Building on the results for periodic signals, we extend our analysis to finitelength signals and develop schemes based on a Gaussian kernel, which avoid the problem of illconditioning by proper weighting of the data matrix. Our methods use structured linear systems and robust algorithmic solutions, which we show through simulation results.
Compressed Sensing of Analog Signals in ShiftInvariant Spaces
, 2009
"... A traditional assumption underlying most data converters is that the signal should be sampled at a rate exceeding twice the highest frequency. This statement is based on a worstcase scenario in which the signal occupies the entire available bandwidth. In practice, many signals are sparse so that on ..."
Abstract

Cited by 74 (41 self)
 Add to MetaCart
(Show Context)
A traditional assumption underlying most data converters is that the signal should be sampled at a rate exceeding twice the highest frequency. This statement is based on a worstcase scenario in which the signal occupies the entire available bandwidth. In practice, many signals are sparse so that only part of the bandwidth is used. In this paper, we develop methods for lowrate sampling of continuoustime sparse signals in shiftinvariant (SI) spaces, generated by m kernels with period T. We model sparsity by treating the case in which only k out of the m generators are active, however, we do not know which k are chosen. We show how to sample such signals at a rate much lower than m/T, which is the minimal sampling rate without exploiting sparsity. Our approach combines ideas from analog sampling in a subspace with a recently developed block diagram that converts an infinite set of sparse equations to a finite counterpart. Using these two components we formulate our problem within the framework of finite compressed sensing (CS) and then rely on algorithms developed in that context. The distinguishing feature of our results is that in contrast to standard CS, which treats finitelength vectors, we consider sampling of analog signals for which no underlying finitedimensional model exists. The proposed framework allows to extend much of the recent literature on CS to the analog domain.
Wavelet theory demystified
 IEEE Trans. Signal Process
, 2003
"... Abstract—In this paper, we revisit wavelet theory starting from the representation of a scaling function as the convolution of a Bspline (the regular part of it) and a distribution (the irregular or residual part). This formulation leads to some new insights on wavelets and makes it possible to red ..."
Abstract

Cited by 58 (26 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we revisit wavelet theory starting from the representation of a scaling function as the convolution of a Bspline (the regular part of it) and a distribution (the irregular or residual part). This formulation leads to some new insights on wavelets and makes it possible to rederive the main results of the classical theory—including some new extensions for fractional orders—in a selfcontained, accessible fashion. In particular, we prove that the Bspline component is entirely responsible for five key wavelet properties: order of approximation, reproduction of polynomials, vanishing moments, multiscale differentiation property, and smoothness (regularity) of the basis functions. We also investigate the interaction of wavelets with differential operators giving explicit time domain formulas for the fractional derivatives of the basis functions. This allows us to specify a corresponding dual wavelet basis and helps us understand why the wavelet transform provides a stable characterization of the derivatives of a signal. Additional results include a new peeling theory of smoothness, leading to the extended notion of wavelet differentiability in thesense and a sharper theorem stating that smoothness implies order. Index Terms—Approximation order, Besov spaces, Hölder smoothness, multiscale differentiation, splines, vanishing moments, wavelets. I.
Cardinal exponential splines: Part I—Theory and filtering algorithms
 IEEE Trans. Signal Process
, 2005
"... Abstract—Causal exponentials play a fundamental role in classical system theory. Starting from those elementary building blocks, we propose a complete and selfcontained signal processing formulation of exponential splines defined on a uniform grid. We specify the corresponding Bspline basis functi ..."
Abstract

Cited by 54 (20 self)
 Add to MetaCart
(Show Context)
Abstract—Causal exponentials play a fundamental role in classical system theory. Starting from those elementary building blocks, we propose a complete and selfcontained signal processing formulation of exponential splines defined on a uniform grid. We specify the corresponding Bspline basis functions and investigate their reproduction properties (Green function and exponential polynomials); we also characterize their stability (Riesz bounds). We show that the exponential Bspline framework allows an exact implementation of continuoustime signal processing operators including convolution, differential operators, and modulation, by simple processing in the discrete Bspline domain. We derive efficient filtering algorithms for multiresolution signal extrapolation and approximation, extending earlier results for polynomial splines. Finally, we present a new asymptotic error formula that predicts the magnitude and the thorder decay of the Papproximation error as a function of the knot spacing. Index Terms—Continuoustime signal processing, convolution, differential operators, Green functions, interpolation, modulation, multiresolution approximation, splines. I.
Multichannel sampling of pulse streams at the rate of innovation
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... We consider minimalrate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of ..."
Abstract

Cited by 51 (9 self)
 Add to MetaCart
We consider minimalrate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of infinite pulse streams was treated in previous works, either the rate of innovation was not achieved, or the pulse shape was limited to Diracs. In this paper we propose a multichannel architecture for sampling pulse streams with arbitrary shape, operating at the rate of innovation. Our approach is based on modulating the input signal with a set of properly chosen waveforms, followed by a bank of integrators. This architecture is motivated by recent work on subNyquist sampling of multiband signals. We show that the pulse stream can be recovered from the proposed minimalrate samples using standard tools taken from spectral estimation in a stable way even at high rates of innovation. In addition, we address practical implementation issues, such as reduction of hardware complexity and immunity to failure in the sampling channels. The resulting scheme is flexible and exhibits better noise robustness than previous approaches.