Results 1  10
of
79
QuadCover – Surface Parameterization using Branched Coverings.
 COMPUT. GRAPH. FORUM
, 2007
"... We introduce an algorithm for automatic computation of global parameterizations on arbitrary simplicial 2manifolds whose parameter lines are guided by a given frame field, for example by principal curvature frames. The parameter lines are globally continuous, and allow a remeshing of the surface in ..."
Abstract

Cited by 98 (11 self)
 Add to MetaCart
(Show Context)
We introduce an algorithm for automatic computation of global parameterizations on arbitrary simplicial 2manifolds whose parameter lines are guided by a given frame field, for example by principal curvature frames. The parameter lines are globally continuous, and allow a remeshing of the surface into quadrilaterals. The algorithm converts a given frame field into a single vector field on a branched covering of the 2manifold, and generates an integrable vector field by a Hodge decomposition on the covering space. Except for an optional smoothing and alignment of the initial frame field, the algorithm is fully automatic and generates high quality quadrilateral meshes.
Discrete Multiscale Vector Field Decomposition
, 2003
"... While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finitedifference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vecto ..."
Abstract

Cited by 94 (11 self)
 Add to MetaCart
While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finitedifference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vector fields on arbitrary tetrahedral grids. We introduce a variational, multiscale decomposition of vector fields into three intuitive components: a divergencefree part, a curlfree part, and a harmonic part. We show how our discrete approach matches its wellknown smooth analog, called the HelmotzHodge decomposition, and that the resulting computational tools have very intuitive geometric interpretation. We demonstrate the versatility of these tools in a series of applications, ranging from data visualization to fluid and deformable object simulation.
Vector field design on surfaces
, 2006
"... Vector field design on surfaces is necessary for many graphics applications: examplebased texture synthesis, nonphotorealistic rendering, and fluid simulation. For these applications, singularities contained in the input vector field often cause visual artifacts. In this article, we present a vecto ..."
Abstract

Cited by 72 (20 self)
 Add to MetaCart
Vector field design on surfaces is necessary for many graphics applications: examplebased texture synthesis, nonphotorealistic rendering, and fluid simulation. For these applications, singularities contained in the input vector field often cause visual artifacts. In this article, we present a vector field design system that allows the user to create a wide variety of vector fields with control over vector field topology, such as the number and location of singularities. Our system combines basis vector fields to make an initial vector field that meets user specifications. The initial vector field often contains unwanted singularities. Such singularities cannot always be eliminated due to the PoincaréHopf index theorem. To reduce the visual artifacts caused by these singularities, our system allows the user to move a singularity to a more favorable location or to cancel a pair of singularities. These operations offer topological guarantees for the vector field in that they only affect userspecified singularities. We develop efficient implementations of these operations based on Conley index theory. Our system also provides other editing operations so that the user may change the topological and geometric characteristics of the vector field. To create continuous vector fields on curved surfaces represented as meshes, we make use of the ideas of geodesic polar maps and parallel transport to interpolate vector values defined at the vertices of the mesh. We also use geodesic polar maps and parallel transport to create basis vector fields on surfaces that meet the user specifications. These techniques enable our vector field design system to work for both planar domains and curved surfaces.
Design of tangent vector fields
 ACM Trans. Graph
, 2007
"... Tangent vector fields are an essential ingredient in controlling surface appearance for applications ranging from anisotropic shading to texture synthesis and nonphotorealistic rendering. To achieve a desired effect one is typically interested in smoothly varying fields that satisfy a sparse set of ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
Tangent vector fields are an essential ingredient in controlling surface appearance for applications ranging from anisotropic shading to texture synthesis and nonphotorealistic rendering. To achieve a desired effect one is typically interested in smoothly varying fields that satisfy a sparse set of userprovided constraints. Using tools from Discrete Exterior Calculus, we present a simple and efficient algorithm for designing such fields over arbitrary triangle meshes. By representing the field as scalars over mesh edges (i.e., discrete 1forms), we obtain an intrinsic, coordinatefree formulation in which field smoothness is enforced through discrete Laplace operators. Unlike previous methods, such a formulation leads to a linear system whose sparsity permits efficient prefactorization. Constraints are incorporated through weighted least squares and can be updated rapidly enough to enable interactive design, as we demonstrate in the context of anisotropic texture synthesis.
NSymmetry Direction Field Design
, 2008
"... Many algorithms in computer graphics and geometry processing use two orthogonal smooth direction fields (unit tangent vector fields) defined over a surface. For instance, these direction fields are used in texture synthesis, in geometry processing or in nonphotorealistic rendering to distribute and ..."
Abstract

Cited by 64 (1 self)
 Add to MetaCart
Many algorithms in computer graphics and geometry processing use two orthogonal smooth direction fields (unit tangent vector fields) defined over a surface. For instance, these direction fields are used in texture synthesis, in geometry processing or in nonphotorealistic rendering to distribute and orient elements on the surface. Such direction fields can be designed in fundamentally different ways, according to the symmetry requested: inverting a direction or swapping two directions may be allowed or not. Despite the advances realized in the last few years in the domain of geometry processing, a unified formalism is still lacking for the mathematical object that characterizes these generalized direction fields. As a consequence, existing direction field design algorithms are limited to use nonoptimum local relaxation procedures. In this paper, we formalize Nsymmetry direction fields, a generalization of classical direction fields. We give a new definition of their singularities to explain how they relate with the topology of the surface. Namely, we provide an accessible demonstration of the PoincaréHopf theorem in the case of Nsymmetry direction fields on 2manifolds. Based on this theorem, we explain how to control the topology of Nsymmetry direction fields on meshes. We demonstrate the validity and robustness of this formalism by deriving a highly efficient algorithm to design a smooth eld interpolating user de ned singularities and directions.
Vector field editing and periodic orbit extraction using morse decomposition
 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
, 2007
"... Design and control of vector fields is critical for many visualization and graphics tasks such as vector field visualization, fluid simulation, and texture synthesis. The fundamental qualitative structures associated with vector fields are fixed points, periodic orbits, and separatrices. In this pa ..."
Abstract

Cited by 59 (33 self)
 Add to MetaCart
(Show Context)
Design and control of vector fields is critical for many visualization and graphics tasks such as vector field visualization, fluid simulation, and texture synthesis. The fundamental qualitative structures associated with vector fields are fixed points, periodic orbits, and separatrices. In this paper, we provide a new technique that allows for the systematic creation and cancellation of fixed points and periodic orbits. This technique enables vector field design and editing on the plane and surfaces with desired qualitative properties. The technique is based on Conley theory, which provides a unified framework that supports the cancellation of fixed points and periodic orbits. We also introduce a novel periodic orbit extraction and visualization algorithm that detects, for the first time, periodic orbits on surfaces. Furthermore, we describe the application of our periodic orbit detection and vector field simplification algorithms to engine simulation data demonstrating the utility of the approach. We apply our design system to vector field visualization by creating data sets containing periodic orbits. This helps us understand the effectiveness of existing visualization techniques. Finally, we propose a new streamlinebased technique that allows vector field topology to be easily identified.
Mesh Parameterization: Theory and Practice
 SIGGRAPH ASIA 2008 COURSE NOTES
, 2008
"... Mesh parameterization is a powerful geometry processing tool with numerous computer graphics applications, from texture mapping to animation transfer. This course outlines its mathematical foundations, describes recent methods for parameterizing meshes over various domains, discusses emerging tools ..."
Abstract

Cited by 56 (5 self)
 Add to MetaCart
Mesh parameterization is a powerful geometry processing tool with numerous computer graphics applications, from texture mapping to animation transfer. This course outlines its mathematical foundations, describes recent methods for parameterizing meshes over various domains, discusses emerging tools like global parameterization and intersurface mapping, and demonstrates a variety of parameterization applications.
Efficient Morse Decompositions of Vector Fields
"... Abstract — Existing topologybased vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits and separatrices which are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field an ..."
Abstract

Cited by 35 (19 self)
 Add to MetaCart
(Show Context)
Abstract — Existing topologybased vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits and separatrices which are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG’s, while fast, are overly conservative and usually results in MCG’s that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of τmaps, which typically provides finer MCG’s than existing techniques. Furthermore, the choice of τ provides a natural tradeoff between the fineness of the MCG’s and the computational costs. We provide efficient implementations of Morse decomposition based on τmaps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.Furthermore, we propose the use of spatial τmaps in addition to the original temporal τmaps. These techniques provide additional tradeoffs between the quality of the MCG’s and the speed of computation. We demonstrate the utility of our technique with various examples in plane and on surfaces including engine simulation datasets. Index Terms — Vector field topology, Morse decomposition, τmaps, Morse connection graph, flow combinatorialization.
Discrete OneForms on Meshes and Applications to 3D Mesh Parameterization
 Journal of CAGD
, 2006
"... We describe how some simple properties of discrete oneforms directly relate to some old and new results concerning the parameterization of 3D mesh data. Our first result is an easy proof of Tutte's celebrated "springembedding" theorem for planar graphs, which is widely used for para ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
(Show Context)
We describe how some simple properties of discrete oneforms directly relate to some old and new results concerning the parameterization of 3D mesh data. Our first result is an easy proof of Tutte's celebrated "springembedding" theorem for planar graphs, which is widely used for parameterizing meshes with the topology of a disk as a planar embedding with a convex boundary. Our second result generalizes the first, dealing with the case where the mesh contains multiple boundaries, which are free to be nonconvex in the embedding. We characterize when it is still possible to achieve an embedding, despite these boundaries being nonconvex. The third result is an analogous embedding theorem for meshes with genus 1 (topologically equivalent to the torus). Applications of these results to the parameterization of meshes with disk and toroidal topologies are demonstrated. Extensions to higher genus meshes are discussed.
The role of the patch test in 2d atomistictocontinuum coupling methods
, 2011
"... Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or othe ..."
Abstract

Cited by 27 (15 self)
 Add to MetaCart
(Show Context)
Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or notforprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: