Results 1  10
of
169
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 793 (39 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 767 (5 self)
 Add to MetaCart
(Show Context)
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
Free Bits, PCPs and NonApproximability  Towards Tight Results
, 1996
"... This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems. ..."
Abstract

Cited by 212 (39 self)
 Add to MetaCart
This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems.
Approximate graph coloring by semidefinite programming
 Proc. 35 th IEEE FOCS, IEEE
, 1994
"... a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register ..."
Abstract

Cited by 210 (7 self)
 Add to MetaCart
(Show Context)
a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register allocation [11, 12, 13] is the maximum degree of any vertex. Beand timetable/examination scheduling [8, 40]. In many We consider the problem of coloring�colorable graphs with the fewest possible colors. We give a randomized polynomial time algorithm which colors a 3colorable graph on vertices with� � ���� colors where sides giving the best known approximation ratio in terms of, this marks the first nontrivial approximation result as a function of the maximum degree. This result can be generalized to�colorable graphs to obtain a coloring using�� � ��� � � � �colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovász�function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the�function. 1
Zero Knowledge and the Chromatic Number
 Journal of Computer and System Sciences
, 1996
"... We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number wi ..."
Abstract

Cited by 195 (6 self)
 Add to MetaCart
(Show Context)
We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number within \Omega\Gamma N ffi ), for some ffi ? 0. We then apply our technique in conjunction with the probabilistically checkable proofs of Hastad, and show that it is hard to approximate the chromatic number to within\Omega\Gamma N 1\Gammaffl ) for any ffl ? 0, assuming NP 6` ZPP. Here, ZPP denotes the class of languages decidable by a random expected polynomialtime algorithm that makes no errors. Our result matches (up to low order terms) the known gap for approximating the size of the largest independent set. Previous O(N ffi ) gaps for approximating the chromatic number (such as those by Lund and Yannakakis, and by Furer) did not match the gap for independent set, and do not extend...
PseudoBoolean Optimization
 DISCRETE APPLIED MATHEMATICS
, 2001
"... This survey examines the state of the art of a variety of problems related to pseudoBoolean optimization, i.e. to the optimization of set functions represented by closed algebraic expressions. The main parts of the survey examine general pseudoBoolean optimization, the specially important case of ..."
Abstract

Cited by 177 (5 self)
 Add to MetaCart
This survey examines the state of the art of a variety of problems related to pseudoBoolean optimization, i.e. to the optimization of set functions represented by closed algebraic expressions. The main parts of the survey examine general pseudoBoolean optimization, the specially important case of quadratic pseudoBoolean optimization (to which every pseudoBoolean optimization can be reduced), several other important special classes, and approximation algorithms.
Improved lowdegree testing and its applications
 IN 29TH STOC
, 1997
"... NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The stro ..."
Abstract

Cited by 141 (17 self)
 Add to MetaCart
NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The strongest previously known connection for this test states that a function passes the test with probability 6 for some d> 7/8 iff the function has agreement N 6 with a polynomial of degree d. We presenta new, and surprisingly strong,analysiswhich shows thatthepreceding statementis truefor 6<<0.5. The analysis uses a version of Hilbe?l irreducibility, a tool used in the factoring of multivariate polynomials. As a consequence we obtain an alternate construction for the following proof system: A constant prover lround proof system for NP languages in which the verifier uses O(log n) random bits, receives answers of size O(log n) bits, and has an error probability of at most 2 – 10g*‘’. Such a proof system, which implies the NPhardness of approximating Set Cover to within fl(log n) factors, has already been obtained by Raz and Safra [28]. Our result was completed after we heard of their claim. A second consequence of our analysis is a self testerlcorrector for any buggy program that (supposedly) computes a polynomial over a finite field. If the program is correct only on 6 fraction of inputs where 15<<0.5, then the tester/corrector determines J and generates 0(~) randomized programs, such that one of the programs is correct on every input, with high probability.
The primaldual method for approximation algorithms and its application to network design problems.
, 1997
"... Abstract In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to N P hard problems in combinatorial optimization. Because of parallels with the primaldual method commonly used in combinatorial optimization, we call it the prim ..."
Abstract

Cited by 137 (5 self)
 Add to MetaCart
(Show Context)
Abstract In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to N P hard problems in combinatorial optimization. Because of parallels with the primaldual method commonly used in combinatorial optimization, we call it the primaldual method for approximation algorithms. We show how this technique can be used to derive approximation algorithms for a number of different problems, including network design problems, feedback vertex set problems, and facility location problems.
Delegating computation: interactive proofs for muggles
 In Proceedings of the ACM Symposium on the Theory of Computing (STOC
, 2008
"... In this work we study interactive proofs for tractable languages. The (honest) prover should be efficient and run in polynomial time, or in other words a “muggle”. 1 The verifier should be superefficient and run in nearlylinear time. These proof systems can be used for delegating computation: a se ..."
Abstract

Cited by 111 (6 self)
 Add to MetaCart
(Show Context)
In this work we study interactive proofs for tractable languages. The (honest) prover should be efficient and run in polynomial time, or in other words a “muggle”. 1 The verifier should be superefficient and run in nearlylinear time. These proof systems can be used for delegating computation: a server can run a computation for a client and interactively prove the correctness of the result. The client can verify the result’s correctness in nearlylinear time (instead of running the entire computation itself). Previously, related questions were considered in the Holographic Proof setting by Babai, Fortnow, Levin and Szegedy, in the argument setting under computational assumptions by Kilian, and in the random oracle model by Micali. Our focus, however, is on the original interactive proof model where no assumptions are made on the computational power or adaptiveness of dishonest provers. Our main technical theorem gives a public coin interactive proof for any language computable by a logspace uniform boolean circuit with depth d and input length n. The verifier runs in time (n+d)·polylog(n) and space O(log(n)), the communication complexity is d · polylog(n), and the prover runs in time poly(n). In particular, for languages computable by logspace uniform N C (circuits of polylog(n) depth), the prover is efficient, the verifier runs in time n · polylog(n) and space O(log(n)), and the communication complexity is polylog(n).
NonApproximability Results for Optimization Problems on Bounded Degree Instances
, 2001
"... We prove some nonapproximability results for restrictions of basic combinatorial optimization problems to instances of bounded \degree" or bounded \width." Speci cally: We prove that the Max 3SAT problem on instances where each variable occurs in at most B clauses, is hard to approxima ..."
Abstract

Cited by 90 (4 self)
 Add to MetaCart
We prove some nonapproximability results for restrictions of basic combinatorial optimization problems to instances of bounded \degree" or bounded \width." Speci cally: We prove that the Max 3SAT problem on instances where each variable occurs in at most B clauses, is hard to approximate to within a factor 7=8+O(1= B), unless RP = NP . Hastad [18] proved that the problem is approximable to within a factor 7=8+1=64B in polynomial time, and that is hard to approximate to within a factor 7=8 + 1=(log B) 3 . Our result uses a new randomized reduction from general instances of Max 3SAT to boundedoccurrences instances. The randomized reduction applies to other Max SNP problems as well.