Results 1  10
of
1,459
Statistical pattern recognition: A review
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract

Cited by 1007 (30 self)
 Add to MetaCart
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have bean receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the wellknown methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Sparse coding with an overcomplete basis set: a strategy employed by V1
 Vision Research
, 1997
"... The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive f ..."
Abstract

Cited by 943 (9 self)
 Add to MetaCart
The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive field properties may be accounted for in terms of a strategy for producing a sparse distribution of output activity in response to natural images. Here, in addition to describing this work in a more expansive fashion, we examine the neurobiological implications of sparse coding. Of particular interest is the case when the code is overcompletei.e., when the number of code elements is greater than the effective dimensionality of the input space. Because the basis functions are nonorthogonal and not linearly independent of each other, sparsifying the code will recruit only those basis functions necessary for representing a given input, and so the inputoutput function will deviate from being purely linear. These deviations from linearity provide a potential explanation for the weak forms of nonlinearity observed in the response properties of cortical simple cells, and they further make predictions about the expected interactions among units in
Fast and robust fixedpoint algorithms for independent component analysis
 IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract

Cited by 860 (33 self)
 Add to MetaCart
(Show Context)
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informationtheoretic approach and the projection pursuit approach. Using maximum entropy approximations of differential entropy, we introduce a family of new contrast (objective) functions for ICA. These contrast functions enable both the estimation of the whole decomposition by minimizing mutual information, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum variance. Finally, we introduce simple fixedpoint algorithms for practical optimization of the contrast functions. These algorithms optimize the contrast functions very fast and reliably.
Independent component analysis: algorithms and applications
 NEURAL NETWORKS
, 2000
"... ..."
(Show Context)
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The GramCharlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural network like model. The validity of the new learning algorithm are verified by computer simulations.
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 520 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach but requires to venture beyond familiar second order statistics. The objective of this paper is to review some of the approaches that have been recently developed to address this exciting problem, to show how they stem from basic principles and how they relate to each other.
Kernel independent component analysis
 Journal of Machine Learning Research
, 2002
"... We present a class of algorithms for independent component analysis (ICA) which use contrast functions based on canonical correlations in a reproducing kernel Hilbert space. On the one hand, we show that our contrast functions are related to mutual information and have desirable mathematical propert ..."
Abstract

Cited by 454 (24 self)
 Add to MetaCart
We present a class of algorithms for independent component analysis (ICA) which use contrast functions based on canonical correlations in a reproducing kernel Hilbert space. On the one hand, we show that our contrast functions are related to mutual information and have desirable mathematical properties as measures of statistical dependence. On the other hand, building on recent developments in kernel methods, we show that these criteria can be computed efficiently. Minimizing these criteria leads to flexible and robust algorithms for ICA. We illustrate with simulations involving a wide variety of source distributions, showing that our algorithms outperform many of the presently known algorithms. 1.
MultiModal Volume Registration by Maximization of Mutual Information
, 1996
"... A new informationtheoretic approach is presented for finding the registration of volumetric medical images of differing modalities. Registration is achieved by adjustment of the relative pose until the mutual information between images is maximized. In our derivation of the registration procedure, ..."
Abstract

Cited by 454 (23 self)
 Add to MetaCart
A new informationtheoretic approach is presented for finding the registration of volumetric medical images of differing modalities. Registration is achieved by adjustment of the relative pose until the mutual information between images is maximized. In our derivation of the registration procedure, few assumptions are made about the nature of the imaging process. As a result the algorithms are quite general and can foreseeably be used with a wide variety of imaging devices. This approach works directly with raw images; no preprocessing or feature detection is required. As opposed to featurebased techniques, all of the information in the scan is used to evaluate the registration. This technique is however more flexible and robust than other intensity based techniques like correlation. Additionally, it has an efficient implementation that is based on stochastic approximation. Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images with comput...