Results 1  10
of
401
The Communicative Multiagent Team Decision Problem: Analyzing Teamwork Theories and Models
 Journal of Artificial Intelligence Research
, 2002
"... Despite the significant progress in multiagent teamwork, existing research does not address the optimality of its prescriptions nor the complexity of the teamwork problem. Without a characterization of the optimalitycomplexity tradeoffs, it is impossible to determine whether the assumptions and app ..."
Abstract

Cited by 229 (23 self)
 Add to MetaCart
(Show Context)
Despite the significant progress in multiagent teamwork, existing research does not address the optimality of its prescriptions nor the complexity of the teamwork problem. Without a characterization of the optimalitycomplexity tradeoffs, it is impossible to determine whether the assumptions and approximations made by a particular theory gain enough efficiency to justify the losses in overall performance. To provide a tool for use by multiagent researchers in evaluating this tradeoff, we present a unified framework, the COMmunicative Multiagent Team Decision Problem (COMMTDP). The COMMTDP model combines and extends existing multiagent theories, such as decentralized partially observable Markov decision processes and economic team theory. In addition to their generality of representation, COMMTDPs also support the analysis of both the optimality of team performance and the computational complexity of the agents' decision problem. In analyzing complexity, we present a breakdown of the computational complexity of constructing optimal teams under various classes of problem domains, along the dimensions of observability and communication cost. In analyzing optimality, we exploit the COMMTDP's ability to encode existing teamwork theories and models to encode two instantiations of joint intentions theory taken from the literature. Furthermore, the COMMTDP model provides a basis for the development of novel team coordination algorithms. We derive a domainindependent criterion for optimal communication and provide a comparative analysis of the two joint intentions instantiations with respect to this optimal policy. We have implemented a reusable, domainindependent software package based on COMMTDPs to analyze teamwork coordination strategies, and we demons...
Recent advances in hierarchical reinforcement learning
, 2003
"... A preliminary unedited version of this paper was incorrectly published as part of Volume ..."
Abstract

Cited by 225 (25 self)
 Add to MetaCart
(Show Context)
A preliminary unedited version of this paper was incorrectly published as part of Volume
Multiagent Planning with Factored MDPs
 In NIPS14
, 2001
"... We present a principled and efficient planning algorithm for cooperative multiagent dynamic systems. A striking feature of our method is that the coordination and communication between the agents is not imposed, but derived directly from the system dynamics and function approximation architecture ..."
Abstract

Cited by 174 (15 self)
 Add to MetaCart
We present a principled and efficient planning algorithm for cooperative multiagent dynamic systems. A striking feature of our method is that the coordination and communication between the agents is not imposed, but derived directly from the system dynamics and function approximation architecture. We view the entire multiagent system as a single, large Markov decision process (MDP), which we assume can be represented in a factored way using a dynamic Bayesian network (DBN). The action space of the resulting MDP is the joint action space of the entire set of agents. Our approach is based on the use of factored linear value functions as an approximation to the joint value function. This factorization of the value function allows the agents to coordinate their actions at runtime using a natural message passing scheme. We provide a simple and efficient method for computing such an approximate value function by solving a single linear program, whose size is determined by the interaction between the value function structure and the DBN. We thereby avoid the exponential blowup in the state and action space. We show that our approach compares favorably with approaches based on reward sharing. We also show that our algorithm is an efficient alternative to more complicated algorithms even in the single agent case.
Dynamic Programming for Partially Observable Stochastic Games
 IN PROCEEDINGS OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 2004
"... We develop an exact dynamic programming algorithm for partially observable stochastic games (POSGs). The algorithm is a synthesis of dynamic programming for partially observable Markov decision processes (POMDPs) and iterated elimination of dominated strategies in normal form games. ..."
Abstract

Cited by 156 (25 self)
 Add to MetaCart
(Show Context)
We develop an exact dynamic programming algorithm for partially observable stochastic games (POSGs). The algorithm is a synthesis of dynamic programming for partially observable Markov decision processes (POMDPs) and iterated elimination of dominated strategies in normal form games.
Learning to Cooperate via Policy Search
, 2000
"... Cooperative games are those in which both agents share the same payoff structure. Valuebased reinforcementlearning algorithms, such as variants of Qlearning, have been applied to learning cooperative games, but they only apply when the game state is completely observable to both agents. Poli ..."
Abstract

Cited by 141 (4 self)
 Add to MetaCart
(Show Context)
Cooperative games are those in which both agents share the same payoff structure. Valuebased reinforcementlearning algorithms, such as variants of Qlearning, have been applied to learning cooperative games, but they only apply when the game state is completely observable to both agents. Policy search methods are a reasonable alternative to valuebased methods for partially observable environments. In this paper, we provide a gradientbased distributed policysearch method for cooperative games and compare the notion of local optimum to that of Nash equilibrium. We demonstrate the effectiveness of this method experimentally in a small, partially observable simulated soccer domain. 1 INTRODUCTION The interaction of decision makers who share an environment is traditionally studied in game theory and economics. The game theoretic formalism is very general, and analyzes the problem in terms of solution concepts such as Nash equilibrium [12], but usually works under the assu...
A framework for sequential planning in multiagent settings
 Journal of Artificial Intelligence Research
, 2005
"... This paper extends the framework of partially observable Markov decision processes (POMDPs) to multiagent settings by incorporating the notion of agent models into the state space. Agents maintain beliefs over physical states of the environment and over models of other agents, and they use Bayesian ..."
Abstract

Cited by 129 (32 self)
 Add to MetaCart
(Show Context)
This paper extends the framework of partially observable Markov decision processes (POMDPs) to multiagent settings by incorporating the notion of agent models into the state space. Agents maintain beliefs over physical states of the environment and over models of other agents, and they use Bayesian update to maintain their beliefs over time. The solutions map belief states to actions. Models of other agents may include their belief states and are related to agent types considered in games of incomplete information. We express the agents ’ autonomy by postulating that their models are not directly manipulable or observable by other agents. We show that important properties of POMDPs, such as convergence of value iteration, the rate of convergence, and piecewise linearity and convexity of the value functions carry over to our framework. Our approach complements a more traditional approach to interactive settings which uses Nash equilibria as a solution paradigm. We seek to avoid some of the drawbacks of equilibria which may be nonunique and are not able to capture offequilibrium behaviors. We do so at the cost of having to represent, process and continually revise models of other agents. Since the agent’s beliefs may be arbitrarily nested the optimal solutions to decision making problems are only asymptotically computable. However, approximate belief updates and approximately optimal plans are computable. We illustrate our framework using a simple application domain, and we show examples of belief updates and value functions. 1.
Coordinated Reinforcement Learning
 In Proceedings of the ICML2002 The Nineteenth International Conference on Machine Learning
, 2002
"... We present several new algorithms for multiagent reinforcement learning. A common feature of these algorithms is a parameterized, structured representation of a policy or value function. This structure is leveraged in an approach we call coordinated reinforcement learning, by which agents coordinate ..."
Abstract

Cited by 111 (6 self)
 Add to MetaCart
(Show Context)
We present several new algorithms for multiagent reinforcement learning. A common feature of these algorithms is a parameterized, structured representation of a policy or value function. This structure is leveraged in an approach we call coordinated reinforcement learning, by which agents coordinate both their action selection activities and their parameter updates. Within the limits of our parametric representations, the agents will determine a jointly optimal action without explicitly considering every possible action in their exponentially large joint action space. Our methods differ from many previous reinforcement learning approaches to multiagent coordination in that structured communication and coordination between agents appears at the core of both the learning algorithm and the execution architecture. Our experimental results, comparing our approach to other RL methods, illustrate both the quality of the policies obtained and the additional benefits of coordination. 1.
Optimizing Information Exchange in Cooperative Multiagent Systems
, 2003
"... Decentralized control of a cooperative multiagent system is the problem faced by multiple decisionmakers that share a common set of objectives. The decisionmakers may be robots placed at separate geographical locations or computational processes distributed in an information space. It may be impo ..."
Abstract

Cited by 108 (18 self)
 Add to MetaCart
Decentralized control of a cooperative multiagent system is the problem faced by multiple decisionmakers that share a common set of objectives. The decisionmakers may be robots placed at separate geographical locations or computational processes distributed in an information space. It may be impossible or undesirable for these decisionmakers to share all their knowledge all the time. Furthermore, exchanging information may incur a cost associated with the required bandwidth or with the risk of revealing it to competing agents. Assuming that communication may not be reliable adds another dimension of complexity to the problem. This paper develops a decisiontheoretic solution to this problem, treating both standard actions and communication as explicit choices that the decision maker must consider. The goal is to derive both action policies and communication policies that together optimize a global value function. We present an analytical model to evaluate the tradeo# between the cost of communication and the value of the information received. Finally, to address the complexity of this hard optimization problem, we develop a practical approximation technique based on myopic metalevel control of communication.
Solving transition independent decentralized Markov decision processes
 JAIR
, 2004
"... Formal treatment of collaborative multiagent systems has been lagging behind the rapid progress in sequential decision making by individual agents. Recent work in the area of decentralized Markov Decision Processes (MDPs) has contributed to closing this gap, but the computational complexity of thes ..."
Abstract

Cited by 107 (14 self)
 Add to MetaCart
(Show Context)
Formal treatment of collaborative multiagent systems has been lagging behind the rapid progress in sequential decision making by individual agents. Recent work in the area of decentralized Markov Decision Processes (MDPs) has contributed to closing this gap, but the computational complexity of these models remains a serious obstacle. To overcome this complexity barrier, we identify a specific class of decentralized MDPs in which the agents ’ transitions are independent. The class consists of independent collaborating agents that are tied together through a structured global reward function that depends on all of their histories of states and actions. We present a novel algorithm for solving this class of problems and examine its properties, both as an optimal algorithm and as an anytime algorithm. To the best of our knowledge, this is the first algorithm to optimally solve a nontrivial subclass of decentralized MDPs. It lays the foundation for further work in this area on both exact and approximate algorithms. 1.
Improved memorybounded dynamic programming for decentralized POMDPs
 In Proceedings of the TwentyThird Conference on Uncertainty in Artificial Intelligence
, 2007
"... Decentralized decision making under uncertainty has been shown to be intractable when each agent has different partial information about the domain. Thus, improving the applicability and scalability of planning algorithms is an important challenge. We present the first memorybounded dynamic program ..."
Abstract

Cited by 94 (22 self)
 Add to MetaCart
Decentralized decision making under uncertainty has been shown to be intractable when each agent has different partial information about the domain. Thus, improving the applicability and scalability of planning algorithms is an important challenge. We present the first memorybounded dynamic programming algorithm for finitehorizon decentralized POMDPs. A set of heuristics is used to identify relevant points of the infinitely large belief space. Using these belief points, the algorithm successively selects the best joint policies for each horizon. The algorithm is extremely efficient, having linear time and space complexity with respect to the horizon length. Experimental results show that it can handle horizons that are multiple orders of magnitude larger than what was previously possible, while achieving the same or better solution quality. These results significantly increase the applicability of decentralized decisionmaking techniques. 1