Results 1  10
of
178
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 755 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Loopy Belief Propagation for Approximate Inference: An Empirical Study
 In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performa ..."
Abstract

Cited by 663 (15 self)
 Add to MetaCart
(Show Context)
Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performance of "Turbo Codes"  codes whose decoding algorithm is equivalent to loopy belief propagation in a chainstructured Bayesian network. In this paper we ask: is there something special about the errorcorrecting code context, or does loopy propagation work as an approximate inference scheme in a more general setting? We compare the marginals computed using loopy propagation to the exact ones in four Bayesian network architectures, including two realworld networks: ALARM and QMR. We find that the loopy beliefs often converge and when they do, they give a good approximation to the correct marginals. However, on the QMR network, the loopy beliefs oscillated and had no obvious relationship ...
Bayesian Networks Without Tears
 AI MAGAZINE
, 1991
"... I give an introduction to Bayesian networks for AI researchers with a limited grounding in probability theory. Over the last few years, this method of reasoning using probabilities has become popular within the AI probability and uncertainty community. Indeed, it is probably fair to say that Bayesia ..."
Abstract

Cited by 293 (2 self)
 Add to MetaCart
(Show Context)
I give an introduction to Bayesian networks for AI researchers with a limited grounding in probability theory. Over the last few years, this method of reasoning using probabilities has become popular within the AI probability and uncertainty community. Indeed, it is probably fair to say that Bayesian networks are to a large segment of the AIuncertainty community what resolution theorem proving is to the AIlogic community. Nevertheless, despite what seems to be their obvious importance, the ideas and techniques have not spread much beyond the research community responsible for them. This is probably because the ideas and techniques are not that easy to understand. I hope to rectify this situation by making Bayesian networks more accessible to the probabilistically unsophisticated.
Learning Bayesian belief networks: An approach based on the MDL principle
 Computational Intelligence
, 1994
"... A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being lear ..."
Abstract

Cited by 247 (7 self)
 Add to MetaCart
(Show Context)
A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being learned. In particular, our method can learn unrestricted multiplyconnected belief networks. Furthermore, unlike other approaches our method allows us to tradeo accuracy and complexity in the learned model. This is important since if the learned model is very complex (highly connected) it can be conceptually and computationally intractable. In such a case it would be preferable to use a simpler model even if it is less accurate. The MDL principle o ers a reasoned method for making this tradeo. We also show that our method generalizes previous approaches based on Kullback crossentropy. Experiments have been conducted to demonstrate the feasibility of the approach. Keywords: Knowledge Acquisition � Bayes Nets � Uncertainty Reasoning. 1
Stochastic simulation algorithms for dynamic probabilistic networks
, 1995
"... Stochastic simulation algorithms such as likelihood weighting often give fast, accurate approximations to posterior probabilities in probabilistic networks, and are the methods of choice for very large networks. Unfortunately, the special characteristics of dynamic probabilistic networks (DPNs), whi ..."
Abstract

Cited by 173 (10 self)
 Add to MetaCart
Stochastic simulation algorithms such as likelihood weighting often give fast, accurate approximations to posterior probabilities in probabilistic networks, and are the methods of choice for very large networks. Unfortunately, the special characteristics of dynamic probabilistic networks (DPNs), which are used to represent stochastic temporal processes, mean that standard simulation algorithms perform very poorly. In essence, the simulation trials diverge further and further from reality as the process is observed over time. In this paper, we present simulation algorithms that use the evidence observed at each time step to push the set of trials back towards reality. The first algorithm, &quot;evidence reversal &quot; (ER) restructures each time slice of the DPN so that the evidence nodes for the slice become ancestors of the state variables. The second algorithm, called &quot;survival of the fittest &quot; sampling (SOF), &quot;repopulates &quot; the set of trials at each time step using a stochastic reproduction rate weighted by the likelihood of the evidence according to each trial. We compare the performance of each algorithm with likelihood weighting on the original network, and also investigate the benefits of combining the ER and SOF methods. The ER/SOF combination appears to maintain bounded error independent of the number of time steps in the simulation.
Policy Recognition in the Abstract Hidden Markov Model
 Journal of Artificial Intelligence Research
, 2002
"... In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem online plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process rep ..."
Abstract

Cited by 161 (25 self)
 Add to MetaCart
(Show Context)
In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem online plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the RaoBlackwellised Particle Filter to the AHMM which allows us to construct an ecient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The RaoBlackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.
The Challenge of Poker
 Artificial Intelligence
, 2001
"... Poker is an interesting testbed for arti cial intelligence research. It is a game of imperfect information, where multiple competing agents must deal with probabilistic knowledge, risk assessment, and possible deception, not unlike decisions made in the real world. Opponent modeling is another dicu ..."
Abstract

Cited by 134 (8 self)
 Add to MetaCart
Poker is an interesting testbed for arti cial intelligence research. It is a game of imperfect information, where multiple competing agents must deal with probabilistic knowledge, risk assessment, and possible deception, not unlike decisions made in the real world. Opponent modeling is another dicult problem in decisionmaking applications, and it is essential to achieving high performance in poker. This paper describes the design considerations and architecture of the poker program Poki. In addition to methods for hand evaluation and betting strategy, Poki uses learning techniques to construct statistical models of each opponent, and dynamically adapts to exploit observed patterns and tendencies. The result is a program capable of playing reasonably strong poker, but there remains considerable research to be done to play at a worldclass level. 1
The BATmobile: Towards a Bayesian Automated Taxi
, 1995
"... The problem of driving an autonomous vehicle in normal traffic engages many areas of AI research and has substantial economic significance. We describe work in progress on a new approach to this problem that uses a decisiontheoretic architecture using dynamic probabilistic networks. The architectur ..."
Abstract

Cited by 103 (4 self)
 Add to MetaCart
The problem of driving an autonomous vehicle in normal traffic engages many areas of AI research and has substantial economic significance. We describe work in progress on a new approach to this problem that uses a decisiontheoretic architecture using dynamic probabilistic networks. The architecture provides a sound solution to the problems of sensor noise, sensor failure, and uncertainty about the behavior of other vehicles and about the effects of one's own actions. We report on advances in the theory of inference and decision making in dynamic, partially observable domains. Our approach has been implemented in a simulation system, and the autonomous vehicle successfully negotiates a variety of difficult situations. 1 The BAT Project Several government agencies and corporations in Europe, Japan, and the US are currently undertaking research in IVHS (Intelligent Vehicle and Highway Systems) with the aim of substantially reducing congestion and accidents, which cost $500 billion/year...
A general algorithm for approximate inference and its applciation to hybrid bayes nets
 In Uncertainty in Artificial Intelligence (UAI'98
, 1998
"... The clique tree algorithm is the standard method for doing inference in Bayesian networks. It works by manipulating clique potentials — distributions over the variables in a clique. While this approach works well for many networks, it is limited by the need to maintain an exact representation of the ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
(Show Context)
The clique tree algorithm is the standard method for doing inference in Bayesian networks. It works by manipulating clique potentials — distributions over the variables in a clique. While this approach works well for many networks, it is limited by the need to maintain an exact representation of the clique potentials. This paper presents a new unified approach that combines approximate inference and the clique tree algorithm, thereby circumventing this limitation. Many known approximate inference algorithms can be viewed as instances of this approach. The algorithm essentially does clique tree propagation, using approximate inference to estimate the densities in each clique. In many settings, the computation of the approximate clique potential can be done easily using statistical importance sampling. Iterations are used to gradually improve the quality of the estimation. 1
AISBN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 2000
"... Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, ..."
Abstract

Cited by 86 (3 self)
 Add to MetaCart
Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AISBN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in nitedimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from dierent stages of the algorithm. We tested the performance of the AISBN algorithm along with two state of the art general purpose sampling algorithms, lik...