Results 1  10
of
53
Generalized weighted Chinese restaurant processes for species sampling mixture models
 STATISTICA SINICA
, 2003
"... The class of species sampling mixture models is introduced as an extension of semiparametric models based on the Dirichlet process to models based on the general class of species sampling priors, or equivalently the class of all exchangeable urn distributions. Using Fubini calculus in conjunction ..."
Abstract

Cited by 83 (11 self)
 Add to MetaCart
The class of species sampling mixture models is introduced as an extension of semiparametric models based on the Dirichlet process to models based on the general class of species sampling priors, or equivalently the class of all exchangeable urn distributions. Using Fubini calculus in conjunction with Pitman (1995, 1996), we derive characterizations of the posterior distribution in terms of a posterior partition distribution that extend the results of Lo (1984) for the Dirichlet process. These results provide a better understanding of models and have both theoretical and practical applications. To facilitate the use of our models we generalize the work in Brunner, Chan, James and Lo (2001) by extending their weighted Chinese restaurant (WCR) Monte Carlo procedure, an i.i.d. sequential importance sampling (SIS) procedure for approximating posterior mean functionals based on the Dirichlet process, to the case of approximation of mean functionals and additionally their posterior laws in species sampling mixture models. We also discuss collapsed Gibbs sampling, Pólya urn Gibbs sampling and a Pólya urn SIS scheme. Our framework allows for numerous applications, including multiplicative counting process models subject to weighted gamma processes, as well as nonparametric and semiparametric hierarchical models based on the Dirichlet process, its twoparameter extension, the PitmanYor process and finite dimensional Dirichlet priors.
Bayesian nonparametric estimators derived from conditional Gibbs structures
 J. PHYS. A: MATH. GEN
, 2008
"... We consider discrete nonparametric priors which induce Gibbstype exchangeable random partitions and investigate their posterior behavior in detail. In particular, we deduce conditional distributions and the corresponding Bayesian nonparametric estimators, which can be readily exploited for predictin ..."
Abstract

Cited by 31 (7 self)
 Add to MetaCart
(Show Context)
We consider discrete nonparametric priors which induce Gibbstype exchangeable random partitions and investigate their posterior behavior in detail. In particular, we deduce conditional distributions and the corresponding Bayesian nonparametric estimators, which can be readily exploited for predicting various features of additional samples. The results provide useful tools for genomic applications where prediction of future outcomes is required.
PoissonKingman Partitions
 of Lecture NotesMonograph Series
, 2002
"... This paper presents some general formulas for random partitions of a finite set derived by Kingman's model of random sampling from an interval partition generated by subintervals whose lengths are the points of a Poisson point process. These lengths can be also interpreted as the jumps of a sub ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
(Show Context)
This paper presents some general formulas for random partitions of a finite set derived by Kingman's model of random sampling from an interval partition generated by subintervals whose lengths are the points of a Poisson point process. These lengths can be also interpreted as the jumps of a subordinator, that is an increasing process with stationary independent increments. Examples include the twoparameter family of PoissonDirichlet models derived from the Poisson process of jumps of a stable subordinator. Applications are made to the random partition generated by the lengths of excursions of a Brownian motion or Brownian bridge conditioned on its local time at zero.
Bayesian modelbased clustering procedures
 Journal of Computational and Graphical Statistics
"... This article establishes a general formulation for Bayesian modelbased clustering, in which subset labels are exchangeable, and items are also exchangeable, possibly up to covariate effects. The notational framework is rich enough to encompass a variety of existing procedures, including some recent ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
This article establishes a general formulation for Bayesian modelbased clustering, in which subset labels are exchangeable, and items are also exchangeable, possibly up to covariate effects. The notational framework is rich enough to encompass a variety of existing procedures, including some recently discussed methods involving stochastic search or hierarchical clustering, but more importantly allows the formulation of clustering procedures that are optimal with respect to a specified loss function. Our focus is on loss functions based on pairwise coincidences, that is, whether pairs of items are clustered into the same subset or not. Optimization of the posterior expected loss function can be formulated as a binary integer programming problem, which can be readily solved by standard software when clustering a modest number of items, but quickly becomes impractical as problem scale increases. To combat this, a new heuristic itemswapping algorithm is introduced. This performs well in our numerical experiments, on both simulated and real data examples. The article includes a comparison of the statistical performance of the (approximate) optimal clustering with earlier methods that are modelbased but ad hoc in their detailed definition.
MCMC for normalized random measure mixture models
, 2013
"... This paper concerns the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models with normalized random measure priors. Making use of some recent posterior characterizations for the class of normalized random measures, we propose novel Markov chain Mon ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
This paper concerns the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models with normalized random measure priors. Making use of some recent posterior characterizations for the class of normalized random measures, we propose novel Markov chain Monte Carlo methods of both marginal type and conditional type. The proposed marginal samplers are generalizations of Neal’s wellregarded Algorithm 8 for Dirichlet process mixture models, whereas the conditional sampler is a variation of those recently introduced in the literature. For both the marginal and conditional methods, we consider as a running example a mixture model with an underlying normalized generalized Gamma process prior, and describe comparative simulation results demonstrating the efficacies of the proposed methods.
Poisson calculus for spatial neutral to the right processes
, 2003
"... In this paper we consider classes of nonparametric priors on spaces of distribution functions and cumulative hazard measures that are based on extensions of the neutral to the right (NTR) concept. In particular, spatial neutral to the right processes that extend the NTR concept from priors on the cl ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
(Show Context)
In this paper we consider classes of nonparametric priors on spaces of distribution functions and cumulative hazard measures that are based on extensions of the neutral to the right (NTR) concept. In particular, spatial neutral to the right processes that extend the NTR concept from priors on the class of distributions on the real line to classes of distributions on general spaces are discussed. Representations of the posterior distribution of the spatial NTR processes are given. A different type of calculus than traditionally employed in the Bayesian literature, based on Poisson process partition calculus methods described in James (2002), is provided which offers a streamlined proof of posterior results for NTR models and its spatial extension. The techniques are applied to progressively more complex models ranging from the complete data case to semiparametric multiplicative intensity models. Refinements are then given which describes the underlying properties of spatial NTR processes analogous to those developed for the Dirichlet process. The analysis yields accessible moment formulae and characterizations of the posterior distribution and relevant marginal distributions. An EPPF formula and additionally a distribution related to the risk and death sets is computed. In the homogeneous case, these distributions turn out to be connected and overlap with recent work on regenerative compositions defined by suitable discretisation of subordinators. The formulae we develop for the marginal distribution of spatial NTR models provide clues on how to sample posterior distributions in complex settings. In addition the spatial NTR is further extended to the mixture model setting which allows for applicability of such processes to much more complex data structures. A description of a species sampling model derived from a spatial NTR model is also given.
Linear and quadratic functionals of random hazard rates: an asymptotic analysis
 Ann. Appl. Probab
, 2008
"... A popular Bayesian nonparametric approach to survival analysis consists in modeling hazard rates as kernel mixtures driven by a completely random measure. In this paper we derive asymptotic results for linear and quadratic functionals of such random hazard rates. In particular, we prove central limi ..."
Abstract

Cited by 11 (9 self)
 Add to MetaCart
(Show Context)
A popular Bayesian nonparametric approach to survival analysis consists in modeling hazard rates as kernel mixtures driven by a completely random measure. In this paper we derive asymptotic results for linear and quadratic functionals of such random hazard rates. In particular, we prove central limit theorems for the cumulative hazard function and for the pathsecond moment and pathvariance of the hazard rate. Our techniques are based on recently established criteria for the weak convergence of single and double stochastic integrals with respect to Poisson random measures. The findings are illustrated by considering specific models involving kernels and random measures commonly exploited in practice. Our abstract results are of independent theoretical interest and can be applied to other areas dealing with Lévy moving average processes. The strictly Bayesian analysis is further explored in a companion paper, where our results are extended to accommodate posterior analysis. 1. Introduction. Survival
A Bayes method for a monotone hazard rate via Spaths
 Ann. Statist
, 2006
"... A class of random hazard rates, that is defined as a mixture of an indicator kernel convoluted with a completely random measure, is of interest. We provide an explicit characterization of the posterior distribution of this mixture hazard rate model via a finite mixture of Spaths. A closed and tract ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
(Show Context)
A class of random hazard rates, that is defined as a mixture of an indicator kernel convoluted with a completely random measure, is of interest. We provide an explicit characterization of the posterior distribution of this mixture hazard rate model via a finite mixture of Spaths. A closed and tractable Bayes estimator for the hazard rate is derived to be a finite sum over Spaths. The path characterization or the estimator is proved to be a RaoBlackwellization of an existing partition characterization or partitionsum estimator. This accentuates the importance of Spath in Bayesian modeling of monotone hazard rates. An efficient Markov chain Monte Carlo (MCMC) method is proposed to approximate this class of estimates. It is shown that Spath characterization also exists in modeling with covariates by a proportional hazard model, and the proposed algorithm again applies. Numerical results of the method are given to demonstrate its practicality and effectiveness.