Results 1 
4 of
4
The Matita Interactive Theorem Prover
"... Abstract. Matita is an interactive theorem prover being developed by the Helm team at the University of Bologna. Its stable version 0.5.x may be downloaded at ..."
Abstract

Cited by 21 (9 self)
 Add to MetaCart
(Show Context)
Abstract. Matita is an interactive theorem prover being developed by the Helm team at the University of Bologna. Its stable version 0.5.x may be downloaded at
Some considerations on the usability of Interactive Provers
"... Abstract. In spite of the remarkable achievements recently obtained in the field of mechanization of formal reasoning, the overall usability of interactive provers does not seem to be sensibly improved since the advent of the “second generation ” of systems, in the mid of the eighties. We try to ana ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
(Show Context)
Abstract. In spite of the remarkable achievements recently obtained in the field of mechanization of formal reasoning, the overall usability of interactive provers does not seem to be sensibly improved since the advent of the “second generation ” of systems, in the mid of the eighties. We try to analyze the reasons of such a slow progress, pointing out the main problems and suggesting some possible research directions. 1
A proof of Bertrand’s postulate
"... We discuss the formalization, in the Matita Interactive Theorem Prover, of some results by Chebyshev concerning the distribution of prime numbers, subsuming, as a corollary, Bertrand’s postulate. Even if Chebyshev’s result has been later superseded by the stronger prime number theorem, his machinery ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
We discuss the formalization, in the Matita Interactive Theorem Prover, of some results by Chebyshev concerning the distribution of prime numbers, subsuming, as a corollary, Bertrand’s postulate. Even if Chebyshev’s result has been later superseded by the stronger prime number theorem, his machinery, and in particular the two functions ψ and θ still play a central role in the modern development of number theory. The proof makes use of most part of the machinery of elementary arithmetics, and in particular of properties of prime numbers, gcd, products and summations, providing a natural benchmark for assessing the actual development of the arithmetical knowledge base. 1.
IRIT, Universite ́ de Toulouse
"... This tutorial provides a pragmatic introduction to the main functionalities of the Matita interactive theorem prover, offering a guided tour through a set of not so trivial examples in the field of software specification and verification. ..."
Abstract
 Add to MetaCart
(Show Context)
This tutorial provides a pragmatic introduction to the main functionalities of the Matita interactive theorem prover, offering a guided tour through a set of not so trivial examples in the field of software specification and verification.