Results 1 - 10
of
316
Practical network support for IP traceback
, 2000
"... This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source ad ..."
Abstract
-
Cited by 678 (13 self)
- Add to MetaCart
(Show Context)
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source addresses. In this paper we describe a general purpose traceback mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify the network path(s) traversed by attack traffic without requiring interactive operational support from Internet Service Providers (ISPs). Moreover, this traceback can be performed “post-mortem ” – after an attack has completed. We present an implementation of this technology that is incrementally deployable, (mostly) backwards compatible and can be efficiently implemented using conventional technology. 1.
Inferring Internet Denial-of-Service Activity
- In Proceedings of the 10th Usenix Security Symposium
, 2001
"... In this paper, we seek to answer a simple question: "How prevalent are denial-of-service attacks in the Internet today?". Our motivation is to understand quantitatively the nature of the current threat as well as to enable longerterm analyses of trends and recurring patterns of attacks. We ..."
Abstract
-
Cited by 456 (12 self)
- Add to MetaCart
(Show Context)
In this paper, we seek to answer a simple question: "How prevalent are denial-of-service attacks in the Internet today?". Our motivation is to understand quantitatively the nature of the current threat as well as to enable longerterm analyses of trends and recurring patterns of attacks. We present a new technique, called "backscatter analysis", that provides an estimate of worldwide denial-of-service activity. We use this approach on three week-long datasets to assess the number, duration and focus of attacks, and to characterize their behavior. During this period, we observe more than 12,000 attacks against more than 5,000 distinct targets, ranging from well known ecommerce companies such as Amazon and Hotmail to small foreign ISPs and dial-up connections. We believe that our work is the only publically available data quantifying denial-of-service activity in the Internet.
A Taxonomy of DDoS Attack and DDoS Defense Mechanisms
- ACM SIGCOMM Computer Communication Review
, 2004
"... Distributed denial-of-service (DDoS) is a rapidly growing problem. The multitude and variety of both the attacks and the defense approaches is overwhelming. This paper presents two taxonomies for classifying attacks and defenses, and thus provides researchers with a better understanding of the probl ..."
Abstract
-
Cited by 358 (2 self)
- Add to MetaCart
(Show Context)
Distributed denial-of-service (DDoS) is a rapidly growing problem. The multitude and variety of both the attacks and the defense approaches is overwhelming. This paper presents two taxonomies for classifying attacks and defenses, and thus provides researchers with a better understanding of the problem and the current solution space. The attack classification criteria was selected to highlight commonalities and important features of attack strategies, that define challenges and dictate the design of countermeasures. The defense taxonomy classifies the body of existing DDoS defenses based on their design decisions; it then shows how these decisions dictate the advantages and deficiencies of proposed solutions.
On the Effectiveness of Route-Based Packet Filtering for Distributed DoS Attack Prevention in Power-Law Internets
- In Proc. ACM SIGCOMM
, 2001
"... Denial of service (DoS) attack on the Internet has become a pressing problem. In this paper, we describe and evaluate route-based distributed packet filtering (DPF), a novel approach to distributed DoS (DDoS) attack prevention. We show that DPF achieves proactiveness and scalability, and we show tha ..."
Abstract
-
Cited by 278 (7 self)
- Add to MetaCart
(Show Context)
Denial of service (DoS) attack on the Internet has become a pressing problem. In this paper, we describe and evaluate route-based distributed packet filtering (DPF), a novel approach to distributed DoS (DDoS) attack prevention. We show that DPF achieves proactiveness and scalability, and we show that there is an intimate relationship between the effectiveness of DPF at mitigating DDoS attack and powerlaw network topology. The salient features of this work are two-fold. First, we show that DPF is able to proactively filter out a significant fraction of spoofed packet flows and prevent attack packets from reaching their targets in the first place. The IP flows that cannot be proactively curtailed are extremely sparse so that their origin can be localized---i.e., IP traceback--- to within a small, constant number of candidate sites. We show that the two proactive and reactive performance effects can be achieved by implementing route-based filtering on less than 20% of Internet autonomous system (AS) sites. Second, we show that the two complementary performance measures are dependent on the properties of the underlying AS graph. In particular, we show that the power-law structure of Internet AS topology leads to connectivity properties which are crucial in facilitating the observed performance effects.
An algebraic approach to IP traceback
- ACM Transactions on Information and System Security
, 2002
"... We present a new solution to the problem of determining the path a packet traversed over the Internet (called the traceback problem) during a denial of service attack. This paper reframes the traceback problem as a polynomial reconstruction problem and uses algebraic techniques from coding theory an ..."
Abstract
-
Cited by 227 (0 self)
- Add to MetaCart
(Show Context)
We present a new solution to the problem of determining the path a packet traversed over the Internet (called the traceback problem) during a denial of service attack. This paper reframes the traceback problem as a polynomial reconstruction problem and uses algebraic techniques from coding theory and learning theory to provide robust methods of transmission and reconstruction. 1
Single-Packet IP Traceback
, 2002
"... The design of the IP protocol makes it difficult to reliably identify the originator of an IP packet. Even in the absence of any deliberate attempt to disguise a packet's origin, wide-spread packet forwarding techniques such as NAT and encapsulation may obscure the packet's true source. Te ..."
Abstract
-
Cited by 218 (4 self)
- Add to MetaCart
(Show Context)
The design of the IP protocol makes it difficult to reliably identify the originator of an IP packet. Even in the absence of any deliberate attempt to disguise a packet's origin, wide-spread packet forwarding techniques such as NAT and encapsulation may obscure the packet's true source. Techniques have been developed to determine the source of large packet flows, but, to date, no system has been presented to track individual packets in an efficient, scalable fashion. We present a hash-based technique for IP traceback that generates audit trails for traffic within the network, and can trace the origin of a single IP packet delivered by the network in the recent past. We demonstrate that the system is effective, space-efficient (requiring approximately 0.5% of the link capacity per unit time in storage) , and implementable in current or next-generation routing hardware. We present both analytic and simulation results showing the system's effectiveness.
A Framework for Classifying Denial of Service Attacks
- In Proceedings of ACM SIGCOMM
, 2003
"... Launching a denial of service (DoS) attack is trivial, but detection and response is a painfully slow and often a manual process. Automatic classification of attacks as single- or multi-source can help focus a response, but current packet-header-based approaches are susceptible to spoofing. This pap ..."
Abstract
-
Cited by 211 (12 self)
- Add to MetaCart
(Show Context)
Launching a denial of service (DoS) attack is trivial, but detection and response is a painfully slow and often a manual process. Automatic classification of attacks as single- or multi-source can help focus a response, but current packet-header-based approaches are susceptible to spoofing. This paper introduces a framework for classifying DoS attacks based on header content, transient ramp-up behavior and novel techniques such as spectral analysis. Although headers are easily forged, we show that characteristics of attack ramp-up and attack spectrum are more difficult to spoof. To evaluate our framework we monitored access links of a regional ISP detecting 80 live attacks. Header analysis identified the number of attackers in 67 attacks, while the remaining 13 attacks were classified based on ramp-up and spectral analysis. We validate our results through monitoring at a second site, controlled experiments, and simulation. We use experiments and simulation to understand the underlying reasons for the characteristics observed. In addition to helping understand attack dynamics, classification mechanisms such as ours are important for the development of realistic models of DoS traffic, can be packaged as an automated tool to aid in rapid response to attacks, and can also be used to estimate the level of DoS activity on the Internet.
On the Effectiveness of Probabilistic Packet Marking for IP Traceback under Denial of Service Attack
, 2000
"... Effective mitigation of denial of service (DoS) attack is a pressing problem on the Internet. In many instances, DoS attacks can be prevented if the spoofed source IP address is traced back to its origin which allows assigning penalties to the offending party or isolating the compromised hosts and d ..."
Abstract
-
Cited by 198 (4 self)
- Add to MetaCart
(Show Context)
Effective mitigation of denial of service (DoS) attack is a pressing problem on the Internet. In many instances, DoS attacks can be prevented if the spoofed source IP address is traced back to its origin which allows assigning penalties to the offending party or isolating the compromised hosts and domains from the rest of the network. Recently IP traceback mechanisms based on probabilistic packet marking (PPM) have been proposed for achieving traceback of DoS attacks. In this paper, we show that probabilistic packet marking -- of interest due to its efficiency and implementability vis-à-vis deterministic packet marking and logging or messaging based schemes -- suffers under spoofing of the marking field in the IP header by the attacker which can impede traceback by the victim. We show that there is a trade-off between the ability of the victim to localize the attacker and the severity of the DoS attack, which is represented as a function of the marking probability, path length, and traffic vo...
An Analysis of Using Reflectors for Distributed Denial-of-Service Attacks
, 2001
"... Attackers can render distributed denial-ofservice attacks more difficult to defend against by bouncing their flooding traffic off of reflectors; that is, by spoofing requests from the victim to a large set of Internet servers that will in turn send their combined replies to the victim. The resulting ..."
Abstract
-
Cited by 193 (2 self)
- Add to MetaCart
(Show Context)
Attackers can render distributed denial-ofservice attacks more difficult to defend against by bouncing their flooding traffic off of reflectors; that is, by spoofing requests from the victim to a large set of Internet servers that will in turn send their combined replies to the victim. The resulting dilution of locality in the flooding stream complicates the victim's abilities both to isolate the attack traffic in order to block it, and to use traceback techniques for locating the source of streams of packets with spoofed source addresses, such as ITRACE [Be00a], probabilistic packet marking [SWKA00], [SP01], and SPIE [S+01]. We discuss a number of possible defenses against reflector attacks, finding that most prove impractical, and then assess the degree to which different forms of reflector traffic will have characteristic signatures that the victim can use to identify and filter out the attack traffic. Our analysis indicates that three types of reflectors pose particularly significant threats: DNS and Gnutella servers, and TCP-based servers (particularly Web servers) running on TCP implementations that suffer from predictable initial sequence numbers. We argue in conclusion in support of "reverse ITRACE" [Ba00] and for the utility of packet traceback techniques that work even for low volume flows, such as SPIE.
A DoS-limiting network architecture
- In Proceedings of ACM SIGCOMM
, 2005
"... We present the design and evaluation of TVA, a network architecture that limits the impact of Denial of Service (DoS) floods from the outset. Our work builds on earlier work on capabilities in which senders obtain short-term authorizations from receivers that they stamp on their packets. We address ..."
Abstract
-
Cited by 191 (6 self)
- Add to MetaCart
(Show Context)
We present the design and evaluation of TVA, a network architecture that limits the impact of Denial of Service (DoS) floods from the outset. Our work builds on earlier work on capabilities in which senders obtain short-term authorizations from receivers that they stamp on their packets. We address the full range of possible attacks against communication between pairs of hosts, including spoofed packet floods, network and host bottlenecks, and router state exhaustion. We use simulation to show that attack traffic can only degrade legitimate traffic to a limited extent, significantly outperforming previously proposed DoS solutions. We use a modified Linux kernel implementation to argue that our design can run on gigabit links using only inexpensive off-the-shelf hardware. Our design is also suitable for transition into practice, providing incremental benefit for incremental deployment.