Results 1 - 10
of
101
Real-time human pose recognition in parts from single depth images
- IN CVPR
, 2011
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract
-
Cited by 568 (17 self)
- Add to MetaCart
(Show Context)
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem. Our large and highly varied training dataset allows the classifier to estimate body parts invariant to pose, body shape, clothing, etc. Finally we generate confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes. The system runs at 200 frames per second on consumer hardware. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state of the art accuracy in our comparison with related work and demonstrate improved generalization over exact whole-skeleton nearest neighbor matching.
A Survey on Shape Correspondence
, 2010
"... We present a review of the correspondence problem and its solution methods, targeting the computer graphics audience. With this goal in mind, we focus on the correspondence of geometric shapes represented by point sets, contours or triangle meshes. This survey is motivated by recent developments in ..."
Abstract
-
Cited by 75 (8 self)
- Add to MetaCart
We present a review of the correspondence problem and its solution methods, targeting the computer graphics audience. With this goal in mind, we focus on the correspondence of geometric shapes represented by point sets, contours or triangle meshes. This survey is motivated by recent developments in the field such as those requiring the correspondence of non-rigid or time-varying surfaces and a recent trend towards semantic shape analysis, of which shape correspondence is one of the central tasks. Establishing a meaningful shape correspondence is a difficult problem since it typically relies on an understanding of the structure of the shapes in question at both a local and global level, and sometimes also the shapes ’ functionality. However, despite its inherent complexity, shape correspondence is a recurrent problem and an essential component in numerous geometry processing applications. In this report, we discuss the different forms of the correspondence problem and review the main solution methods, aided by several classification criteria which can be used by the reader to objectively compare the methods. We finalize the report by discussing open problems and future perspectives.
Probabilistic reasoning for assembly-based 3d modeling
- In Proc. SIGGRAPH, ACM
, 2011
"... Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presente ..."
Abstract
-
Cited by 55 (9 self)
- Add to MetaCart
Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components.
Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering
"... We introduce an algorithm for unsupervised co-segmentation of a set of shapes so as to reveal the semantic shape parts and establish their correspondence across the set. The input set may exhibit significant shape variability where the shapes do not admit proper spatial alignment and the correspondi ..."
Abstract
-
Cited by 51 (9 self)
- Add to MetaCart
We introduce an algorithm for unsupervised co-segmentation of a set of shapes so as to reveal the semantic shape parts and establish their correspondence across the set. The input set may exhibit significant shape variability where the shapes do not admit proper spatial alignment and the corresponding parts in any pair of shapes may be geometrically dissimilar. Our algorithm can handle such challenging input sets since, first, we perform co-analysis in a descriptor space, where a combination of shape descriptors relates the parts independently of their pose, location, and cardinality. Secondly, we exploit a key enabling feature of the input set, namely, dissimilar parts may be “linked ” through third-parties present in the set. The links are derived from the pairwise similarities between the parts ’ descriptors. To reveal such linkages, which may manifest themselves as anisotropic and non-linear structures in the descriptor space, we perform spectral clustering with the aid of diffusion maps. We show that with our approach, we are able to co-segment sets of shapes that possess significant variability, achieving results that are close to those of a supervised approach. Keywords: Co-segmentation, shape correspondence, spectral clustering, diffusion maps. Links: DL PDF 1
Functional Maps: A Flexible Representation of Maps Between Shapes
"... Figure 1: Horse algebra: the functional representation and map inference algorithm allow us to go beyond point-to-point maps. The source shape (top left corner) was mapped to the target shape (left) by posing descriptor-based functional constraints which do not disambiguate symmetries (i.e. without ..."
Abstract
-
Cited by 48 (12 self)
- Add to MetaCart
Figure 1: Horse algebra: the functional representation and map inference algorithm allow us to go beyond point-to-point maps. The source shape (top left corner) was mapped to the target shape (left) by posing descriptor-based functional constraints which do not disambiguate symmetries (i.e. without landmark constraints). By further adding correspondence constraints, we obtain a near isometric map which reverses orientation, mapping left to right (center). The representation allows for algebraic operations on shape maps, so we can subtract this map from the ambivalent map, to retrieve the orientation preserving near-isometry (right). Each column shows the first 20x20 block of the functional map representation (bottom), and the action of the map by transferring colors from the source shape to the target shape (top). We present a novel representation of maps between pairs of shapes that allows for efficient inference and manipulation. Key to our approach is a generalization of the notion of map that puts in correspondence real-valued functions rather than points on the shapes. By choosing a multi-scale basis for the function space on each shape, such as the eigenfunctions of its Laplace-Beltrami operator, we obtain a representation of a map that is very compact, yet fully suitable for global inference. Perhaps more remarkably, most
Joint shape segmentation with linear programming
- ACM Trans. on Graphics (Proc. SIGGRAPH Asia
, 2011
"... We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of t ..."
Abstract
-
Cited by 43 (4 self)
- Add to MetaCart
We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of the joint segmentation problem. The program optimizes over possible segmentations of individual shapes as well as over possible correspondences between segments from multiple shapes. The integer quadratic program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape segmentation significantly outperforms single-shape segmentation techniques.
Exploring collections of 3D models using fuzzy correspondences
"... Large collections of 3D models from the same object class (e.g., chairs, cars, animals) are now commonly available via many public repositories, but exploring the range of shape variations across such collections remains a challenging task. In this work, we present a new exploration interface that a ..."
Abstract
-
Cited by 42 (14 self)
- Add to MetaCart
Large collections of 3D models from the same object class (e.g., chairs, cars, animals) are now commonly available via many public repositories, but exploring the range of shape variations across such collections remains a challenging task. In this work, we present a new exploration interface that allows users to browse collections based on similarities and differences between shapes in users-pecified regions of interest (ROIs). To support this interactive system, we introduce a novel analysis method for computing similarity relationships between points on 3D shapes across a collection. We encode the inherent ambiguity in these relationships using fuzzy point correspondences and propose a robust and efficient computational framework that estimates fuzzy correspondences using only a sparse set of pairwise model alignments. We evaluate our analysis method on a range of correspondence benchmarks and report substantial improvements in both speed and accuracy over existing alternatives. In addition, we demonstrate how fuzzy correspondences enable key features in our exploration tool, such as automated view alignment, ROI-based similarity search, and faceted browsing.
Efficient Human Pose Estimation from Single Depth Images
- INVITED PAPER- CVPR 2011 SPECIAL ISSUE
, 2011
"... We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image, without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training ..."
Abstract
-
Cited by 37 (4 self)
- Add to MetaCart
(Show Context)
We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image, without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training images. This allows us to learn models that are largely invariant to factors such as pose, body shape, field-of-view cropping, and clothing. Our first approach employs an intermediate body parts representation, designed so that an accurate per-pixel classification of the parts will localize the joints of the body. The second approach instead directly regresses the positions of body joints. By using simple depth pixel comparison features, and parallelizable decision forests, both approaches can run super-realtime on consumer hardware. Our evaluation investigates many aspects of our methods, and compares the approaches to each other and to the state of the art. Results on silhouettes suggest broader applicability to other imaging modalities.
Style-Content Separation by Anisotropic Part Scales
"... We perform co-analysis of a set of man-made 3D objects to allow the creation of novel instances derived from the set. We analyze the objects at the part level and treat the anisotropic part scales as a shape style. The co-analysis then allows style transfer to synthesize new objects. The key to co-a ..."
Abstract
-
Cited by 34 (21 self)
- Add to MetaCart
We perform co-analysis of a set of man-made 3D objects to allow the creation of novel instances derived from the set. We analyze the objects at the part level and treat the anisotropic part scales as a shape style. The co-analysis then allows style transfer to synthesize new objects. The key to co-analysis is part correspondence, where a major challenge is the handling of large style variations and diverse geometric content in the shape set. We propose style-content separation as a means to address this challenge. Specifically, we define a correspondence-free style signature for style clustering. We show that confining analysis to within a style cluster facilitates tasks such as co-segmentation, content classification, and deformation-driven part correspondence. With part correspondence between each pair of shapes in the set, style transfer can be easily performed. We demonstrate our analysis and synthesis results on several sets of man-made objects with style and content variations.
Active co-analysis of a set of shapes
- ACM Trans. on Graph (SIGGRAPH Asia
, 2012
"... Figure 1: Overview of our active co-analysis: (a) We start with an initial unsupervised co-segmentation of the input set. (b) During active learning, the system automatically suggests constraints which would refine results and the user interactively adds constraints as appropriate. In this example, ..."
Abstract
-
Cited by 33 (9 self)
- Add to MetaCart
Figure 1: Overview of our active co-analysis: (a) We start with an initial unsupervised co-segmentation of the input set. (b) During active learning, the system automatically suggests constraints which would refine results and the user interactively adds constraints as appropriate. In this example, the user adds a cannot-link constraint (in red) and a must-link constraint (in blue) between segments. (c) The constraints are propagated to the set and the co-segmentation is refined. The process from (b) to (c) is repeated until the desired result is obtained. Unsupervised co-analysis of a set of shapes is a difficult problem since the geometry of the shapes alone cannot always fully describe the semantics of the shape parts. In this paper, we propose a semi-supervised learning method where the user actively assists in the co-analysis by iteratively providing inputs that progressively constrain the system. We introduce a novel constrained clustering method based on a spring system which embeds elements to better respect their inter-distances in feature space together with the usergiven set of constraints. We also present an active learning method that suggests to the user where his input is likely to be the most effective in refining the results. We show that each single pair of constraints affects many relations across the set. Thus, the method requires only a sparse set of constraints to quickly converge toward a consistent and error-free semantic labeling of the set.