Results 1  10
of
45
Lazy Satisfiability Modulo Theories
 JOURNAL ON SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION 3 (2007) 141Â224
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract

Cited by 189 (50 self)
 Add to MetaCart
(Show Context)
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theoryspecific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (Tsolver), handling respectively the Boolean and the theoryspecific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that
DPLL(T): Fast Decision Procedures
, 2004
"... The logic of equality with uninterpreted functions (EUF) and its extensions have been widely applied to processor verification, by means of a large variety of progressively more sophisticated (lazy or eager) translations into propositional SAT. Here we propose a new approach, namely a general DP ..."
Abstract

Cited by 141 (14 self)
 Add to MetaCart
(Show Context)
The logic of equality with uninterpreted functions (EUF) and its extensions have been widely applied to processor verification, by means of a large variety of progressively more sophisticated (lazy or eager) translations into propositional SAT. Here we propose a new approach, namely a general DPLL(X) engine, whose parameter X can be instantiated with a specialized solver Solver T for a given theory T , thus producing a system DPLL(T ). We describe this DPLL(T ) scheme, the interface between DPLL(X) and Solver T , the architecture of DPLL(X), and our solver for EUF, which includes incremental and backtrackable congruence closure algorithms for dealing with the builtin equality and the integer successor and predecessor symbols. Experiments with a first implementation indicate that our technique already outperforms the previous methods on most benchmarks, and scales up very well.
DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic
 In Proc. CAV’05, volume 3576 of LNCS
, 2005
"... Abstract. At CAV’04 we presented the DPLL(T) approach for satisfiability modulo theories T. It is based on a general DPLL(X) engine whose X can be instantiated with different theory solvers SolverT for conjunctions of literals. Here we go one important step further: we require SolverT to be able to ..."
Abstract

Cited by 51 (6 self)
 Add to MetaCart
Abstract. At CAV’04 we presented the DPLL(T) approach for satisfiability modulo theories T. It is based on a general DPLL(X) engine whose X can be instantiated with different theory solvers SolverT for conjunctions of literals. Here we go one important step further: we require SolverT to be able to detect all input literals that are Tconsequences of the partial model that is being explored by DPLL(X). Although at first sight this may seem too expensive, we show that for difference logic the benefits compensate by far the costs. Here we describe and discuss this new version of DPLL(T), the DPLL(X) engine, and our SolverT for difference logic. The resulting very simple DPLL(T) system importantly outperforms the existing techniques for this logic. Moreover, it has very good scaling properties: especially on the larger problems it gives improvements of orders of magnitude w.r.t. the existing stateoftheart tools. 1
The UCLID Decision Procedure
 In CAV’04
, 2004
"... UCLID is a tool for termlevel modeling and verification of infinitestate systems expressible in the logic of counter arithmetic with lambda expressions and uninterpreted functions (CLU). In this paper, we describe a key component of the tool, the decision procedure for CLU. ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
(Show Context)
UCLID is a tool for termlevel modeling and verification of infinitestate systems expressible in the logic of counter arithmetic with lambda expressions and uninterpreted functions (CLU). In this paper, we describe a key component of the tool, the decision procedure for CLU.
Propositional Satisfiability and Constraint Programming: a Comparative Survey
 ACM Computing Surveys
, 2006
"... Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively independent threads of research, crossfertilising occasionally. These two approaches to problem solving have a lot in common, as evidenced by similar ideas underlying the branch and prune algorithms ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively independent threads of research, crossfertilising occasionally. These two approaches to problem solving have a lot in common, as evidenced by similar ideas underlying the branch and prune algorithms that are most successful at solving both kinds of problems. They also exhibit differences in the way they are used to state and solve problems, since SAT’s approach is in general a blackbox approach, while CP aims at being tunable and programmable. This survey overviews the two areas in a comparative way, emphasising the similarities and differences between the two and the points where we feel that one technology can benefit from ideas or experience acquired
Efficient satisfiability modulo theories via delayed theory combination
 IN PROC. CAV 2005, VOLUME 3576 OF LNCS
, 2005
"... The problem of deciding the satisfiability of a quantifierfree formula with respect to a background theory, also known as Satisfiability Modulo Theories (SMT), is gaining increasing relevance in verification: representation capabilities beyond propositional logic allow for a natural modeling of re ..."
Abstract

Cited by 38 (15 self)
 Add to MetaCart
The problem of deciding the satisfiability of a quantifierfree formula with respect to a background theory, also known as Satisfiability Modulo Theories (SMT), is gaining increasing relevance in verification: representation capabilities beyond propositional logic allow for a natural modeling of realworld problems (e.g., pipeline and RTL circuits verification, proof obligations in software systems). In this paper, we focus on the case where the background theory is the combination T1 £ T2 of two simpler theories. Many SMT procedures combine a boolean model enumeration with a decision procedure for T1 £ T2, where conjunctions of literals can be decided by an integration schema such as NelsonOppen, via a structured exchange of interface formulae (e.g., equalities in the case of convex theories, disjunctions of equalities otherwise). We propose a new approach for SMT¤T1 £ T2¥, called Delayed Theory Combination, which does not require a decision procedure for T1 £ T2, but only individual decision procedures for T1 and T2, which are directly integrated into the boolean model enumerator. This approach is much simpler and natural, allows each of the solvers to be implemented and optimized without taking into account the others, and it nicely encompasses the case of nonconvex theories. We show the effectiveness of the approach by a thorough experimental comparison.
Solving Partial Order Constraints for LPO Termination
 JOURNAL ON SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION 5 (2008) 193–215
, 2008
"... This paper introduces a propositional encoding for lexicographic path orders (LPOs) and the corresponding LPO termination property of term rewrite systems. Given this encoding, termination analysis can be performed using a stateoftheart Boolean satisfiability solver. Experimental results are uneq ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
This paper introduces a propositional encoding for lexicographic path orders (LPOs) and the corresponding LPO termination property of term rewrite systems. Given this encoding, termination analysis can be performed using a stateoftheart Boolean satisfiability solver. Experimental results are unequivocal, indicating orders of magnitude speedups in comparison with previous implementations for LPO termination. The results of this paper have already had a direct impact on the design of several major termination analyzers for term rewrite systems. The contribution builds on a symbolbased approach towards reasoning about partial orders. The symbols in an unspecified partial order are viewed as variables that take integer values and are interpreted as indices in the order. For a partial order statement on n symbols, each index is represented in ⌈log 2 n ⌉ propositional variables and partial order constraints between symbols are modeled on the bit representations. The proposed encoding is general and relevant to other applications which involve propositional reasoning about partial orders.
An incremental and layered procedure for the satisfiability of linear arithmetic logic
 In Tools and Algorithms for the Construction and Analysis of Systems, 11th Int. Conf., (TACAS
, 2005
"... Abstract. In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT proce ..."
Abstract

Cited by 31 (14 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways. First, our procedure relies on an incremental solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stackbased interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred. Second, the solver is layered: a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer