Results 1  10
of
48
Gaussian Bounds for Noise Correlation of Functions and Tight Analysis of Long Codes
 In IEEE Symposium on Foundations of Computer Science (FOCS
, 2008
"... In this paper we derive tight bounds on the expected value of products of low influence functions defined on correlated probability spaces. The proofs are based on extending Fourier theory to an arbitrary number of correlated probability spaces, on a generalization of an invariance principle recentl ..."
Abstract

Cited by 58 (6 self)
 Add to MetaCart
(Show Context)
In this paper we derive tight bounds on the expected value of products of low influence functions defined on correlated probability spaces. The proofs are based on extending Fourier theory to an arbitrary number of correlated probability spaces, on a generalization of an invariance principle recently obtained with O’Donnell and Oleszkiewicz for multilinear polynomials with low influences and bounded degree and on properties of multidimensional Gaussian distributions. We present two applications of the new bounds to the theory of social choice. We show that Majority is asymptotically the most predictable function among all low influence functions given a random sample of the voters. Moreover, we derive an almost tight bound in the context of Condorcet aggregation and low influence voting schemes on a large number of candidates. In particular, we show that for every low influence aggregation function, the probability that Condorcet voting on k candidates will result in a unique candidate that is preferable to all others is k−1+o(1). This matches the asymptotic behavior of the majority function for which the probability is k−1−o(1). A number of applications in hardness of approximation in theoretical computer science were
Conditional hardness for approximate coloring
 In STOC 2006
, 2006
"... We study the APPROXIMATECOLORING(q, Q) problem: Given a graph G, decide whether χ(G) ≤ q or χ(G) ≥ Q (where χ(G) is the chromatic number of G). We derive conditional hardness for this problem for any constant 3 ≤ q < Q. For q ≥ 4, our result is based on Khot’s 2to1 conjecture [Khot’02]. For ..."
Abstract

Cited by 46 (13 self)
 Add to MetaCart
We study the APPROXIMATECOLORING(q, Q) problem: Given a graph G, decide whether χ(G) ≤ q or χ(G) ≥ Q (where χ(G) is the chromatic number of G). We derive conditional hardness for this problem for any constant 3 ≤ q < Q. For q ≥ 4, our result is based on Khot’s 2to1 conjecture [Khot’02]. For q = 3, we base our hardness result on a certain ‘⊲< shaped ’ variant of his conjecture. We also prove that the problem ALMOST3COLORINGε is hard for any constant ε> 0, assuming Khot’s Unique Games conjecture. This is the problem of deciding for a given graph, between the case where one can 3color all but a ε fraction of the vertices without monochromatic edges, and the case where the graph contains no independent set of relative size at least ε. Our result is based on bounding various generalized noisestability quantities using the invariance principle of Mossel et al [MOO’05].
Towards Sharp Inapproximability For Any 2CSP
"... We continue the recent line of work on the connection between semidefinite programmingbased approximation algorithms and the Unique Games Conjecture. Given any boolean 2CSP (or more generally, any nonnegative objective function on two boolean variables), we show how to reduce the search for a good ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
(Show Context)
We continue the recent line of work on the connection between semidefinite programmingbased approximation algorithms and the Unique Games Conjecture. Given any boolean 2CSP (or more generally, any nonnegative objective function on two boolean variables), we show how to reduce the search for a good inapproximability result to a certain numeric minimization problem. The key objects in our analysis are the vector triples arising when doing clausebyclause analysis of algorithms based on semidefinite programming. Given a weighted set of such triples of a certain restricted type, which are “hard ” to round in a certain sense, we obtain a Unique Gamesbased inapproximability matching this “hardness ” of rounding the set of vector triples. Conversely, any instance together with an SDP solution can be viewed as a set of vector triples, and we show that we can always find an assignment to the instance which is at least as good as the “hardness ” of rounding the corresponding set of vector triples. We conjecture that the restricted type required for the hardness result is in fact no restriction, which would imply that these upper and lower bounds match exactly. This conjecture is supported by all existing results for specific 2CSPs. As an application, we show that MAX 2AND is hard to approximate within 0.87435. This improves upon the best previous hardness of αGW + ɛ ≈ 0.87856, and comes very close to matching the approximation ratio of the best algorithm known, 0.87401. It also establishes that balanced instances of MAX 2AND, i.e., instances in which each variable occurs positively and negatively equally often, are not the hardest to approximate, as these can be approximated within a factor αGW.
SDP gaps and UGChardness for MaxCutGain
, 2008
"... Given a graph with maximum cut of (fractional) size c, the Goemans–Williamson semidefinite programming (SDP)based algorithm is guaranteed to find a cut of size at least.878 · c. However this guarantee becomes trivial when c is near 1/2, since making random cuts guarantees a cut of size 1/2 (i.e., ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
Given a graph with maximum cut of (fractional) size c, the Goemans–Williamson semidefinite programming (SDP)based algorithm is guaranteed to find a cut of size at least.878 · c. However this guarantee becomes trivial when c is near 1/2, since making random cuts guarantees a cut of size 1/2 (i.e., half of all edges). A few years ago, Charikar and Wirth (analyzing an algorithm of Feige and Langberg) showed that given a graph with maximum cut 1/2 + ε, one can find a cut of size 1/2 + Ω(ε/log(1/ε)). The main contribution of our paper is twofold: 1. We give a natural and explicit 1/2 + ε vs. 1/2 + O(ε/log(1/ε)) integrality gap for the MaxCut SDP based on Euclidean space with the Gaussian probability distribution. This shows that the SDProunding algorithm of CharikarWirth is essentially best possible. 2. We show how this SDP gap can be translated into a Long Code test with the same parameters. This implies that beating the CharikarWirth guarantee with any efficient algorithm is NPhard, assuming the Unique Games Conjecture (UGC). This result essentially settles the asymptotic approximability of MaxCut, assuming UGC. Building on the first contribution, we show how “randomness reduction ” on related SDP gaps for the QuadraticProgramming problem lets us make the Ω(log(1/ε)) gap as large as Ω(logn) for nvertex graphs. In addition to optimally answering an open question
An optimal lower bound on the communication complexity of GapHammingDistance
 In Proc. 43rd Annual ACM Symposium on the Theory of Computing
, 2011
"... ar ..."
(Show Context)
Approximability and proof complexity
, 2012
"... This work is concerned with the proofcomplexity of certifying that optimization problems do not have good solutions. Specifically we consider boundeddegree “Sum of Squares ” (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Pa ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
(Show Context)
This work is concerned with the proofcomplexity of certifying that optimization problems do not have good solutions. Specifically we consider boundeddegree “Sum of Squares ” (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning that any nvariable degreed proof can be found in time n O(d). Furthermore, the SDP is dual to the wellknown Lasserre SDP hierarchy, meaning that the “d/2round Lasserre value ” of an optimization problem is equal to the best bound provable using a degreed SOS proof. These ideas were exploited in a recent paper by Barak et al. (STOC 2012) which shows that the known “hard instances ” for the UniqueGames problem are in fact solved close to optimally by a constant level of the Lasserre SDP hierarchy. We continue the study of the power of SOS proofs in the context of difficult optimization problems. In particular, we show that the BalancedSeparator integrality gap instances proposed by Devanur et al. can have their optimal value certified by a degree4 SOS proof. The key ingredient is an SOS proof of the KKL Theorem. We also investigate the extent to which the Khot–Vishnoi MaxCut integrality gap instances can have their optimum value certified by an SOS proof. We show they can be certified to within a factor.952 (>.878) using a constantdegree proof. These investigations also raise an interesting mathematical question: is there a constantdegree SOS proof of the Central Limit Theorem?
Gaussian Noise Sensitivity and Fourier Tails
, 2011
"... We observe a subadditivity property for the noise sensitivity of subsets of Gaussian space. For subsets of volume 1 2, this leads to an almost trivial proof of Borell’s Isoperimetric Inequality for ρ = cos ( π), ℓ ∈ N. In turn this can be used to obtain the Gaussian Isoperimetric Inequality for ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
(Show Context)
We observe a subadditivity property for the noise sensitivity of subsets of Gaussian space. For subsets of volume 1 2, this leads to an almost trivial proof of Borell’s Isoperimetric Inequality for ρ = cos ( π), ℓ ∈ N. In turn this can be used to obtain the Gaussian Isoperimetric Inequality for
Comparison Theorems for Exit Times
 GAFA
, 2000
"... We compare the exit time of Brownian motion from a subset of a smooth complete Riemannian manifold with the exit time from a geodesic disc in a manifold of constant curvature. ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
We compare the exit time of Brownian motion from a subset of a smooth complete Riemannian manifold with the exit time from a geodesic disc in a manifold of constant curvature.
On the unique games conjecture
 In FOCS
, 2005
"... This article surveys recently discovered connections between the Unique Games Conjecture and computational complexity, algorithms, discrete Fourier analysis, and geometry. 1 ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
(Show Context)
This article surveys recently discovered connections between the Unique Games Conjecture and computational complexity, algorithms, discrete Fourier analysis, and geometry. 1