Results 1  10
of
559
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2182 (27 self)
 Add to MetaCart
The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximumlikelihood programs and much higher than the performance of distancebased and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximumlikelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distancebased and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page:
Application of Phylogenetic Networks in Evolutionary Studies
 SUBMITTED TO MBE 2005
, 2005
"... The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evoluti ..."
Abstract

Cited by 887 (15 self)
 Add to MetaCart
The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evolution proceeds in a treelike manner, analysis of the data may not be best served by using methods that enforce a tree structure, but rather by a richer visualization of the data to evaluate its properties, at least as an essential first step. Thus, phylogenetic networks should be employed when reticulate events such as hybridization, horizontal gene transfer, recombination, or gene duplication andloss are believed to be involved, and, even in the absence of such events, phylogenetic networks have a useful role to play. This paper reviews the terminology used for phylogenetic networks and covers both split networks and reticulate networks, how they are defined and how they can be interpreted. Additionally, the paper outlines the beginnings of a comprehensive statistical framework for applying split network methods. We show how split networks can represent confidence sets of trees and introduce a conservative statistical test for whether the conflicting signal in a network is treelike. Finally, this paper describes a new program SplitsTree4, an interactive and comprehensive tool for inferring different types of phylogenetic networks from sequences, distances and trees.
ProtTest: selection of bestfit models of protein evolution
 Bioinformatics
, 2005
"... doi:10.1093/bioinformatics/bti263 ..."
(Show Context)
S: PhyloBayes 3. A Bayesian software package for phylogenetic reconstruction and molecular dating
 Bioinformatics
"... Motivation: A variety of probabilistic models describing the evolution of DNA or protein sequences have been proposed for phylogenetic reconstruction or for molecular dating. However, there still lacks a common implementation allowing one to freely combine these independent features, so as to test t ..."
Abstract

Cited by 187 (8 self)
 Add to MetaCart
Motivation: A variety of probabilistic models describing the evolution of DNA or protein sequences have been proposed for phylogenetic reconstruction or for molecular dating. However, there still lacks a common implementation allowing one to freely combine these independent features, so as to test their ability to jointly improve phylogenetic and dating accuracy. Results: We propose a software package, PhyloBayes 3, which can be used for conducting Bayesian phylogenetic reconstruction and molecular dating analyses, using a large variety of amino acid replacement and nucleotide substitution models, including empirical mixtures or nonparametric models, as well as alternative clock relaxation processes. Availability: PhyloBayes is freely available from our web site
Dirichlet Mixtures: A Method for Improving Detection of Weak but Significant Protein Sequence Homology
, 1996
"... This paper presents the mathematical foundations of Dirichlet mixtures, which have been used to improve database search results for homologous sequences, when a variable number of sequences from a protein family or domain are known. We present a method for condensing the information in a protein dat ..."
Abstract

Cited by 175 (24 self)
 Add to MetaCart
(Show Context)
This paper presents the mathematical foundations of Dirichlet mixtures, which have been used to improve database search results for homologous sequences, when a variable number of sequences from a protein family or domain are known. We present a method for condensing the information in a protein database into a mixture of Dirichlet densities. These mixtures are designed to be combined with observed amino acid frequencies, to form estimates of expected amino acid probabilities at each position in a profile, hidden Markov model, or other statistical model. These estimates give a statistical model greater generalization capacity, such that remotely related family members can be more reliably recognized by the model. Dirichlet mixtures have been shown to outperform substitution matrices and other methods for computing these expected amino acid distributions in database search, resulting in fewer false positives and false negatives for the families tested. This paper corrects a previously p...
Flexible sequence similarity searching with the FASTA3 program package
 Methods Mol. Biol
, 2000
"... Since the publication of the first rapid method for comparing biological sequences 15 years ago (1), DNA and protein sequence comparison have become routine steps in biochemical characterization, from newly cloned proteins to entire genomes. As the DNA and protein sequence databases become more comp ..."
Abstract

Cited by 124 (3 self)
 Add to MetaCart
(Show Context)
Since the publication of the first rapid method for comparing biological sequences 15 years ago (1), DNA and protein sequence comparison have become routine steps in biochemical characterization, from newly cloned proteins to entire genomes. As the DNA and protein sequence databases become more complete, a sequence similarity search is more likely to reveal
H: Computing Bayes factors using thermodynamic integration
 Syst Biol
"... Abstract.—In the Bayesian paradigm, a common method for comparing two models is to compute the Bayes factor, defined as the ratio of their respective marginal likelihoods. In recent phylogenetic works, the numerical evaluation of marginal likelihoods has often been performed using the harmonic mean ..."
Abstract

Cited by 112 (7 self)
 Add to MetaCart
(Show Context)
Abstract.—In the Bayesian paradigm, a common method for comparing two models is to compute the Bayes factor, defined as the ratio of their respective marginal likelihoods. In recent phylogenetic works, the numerical evaluation of marginal likelihoods has often been performed using the harmonic mean estimation procedure. In the present article, we propose to employ another method, based on an analogy with statistical physics, called thermodynamic integration. We describe the method, propose an implementation, and show on two analytical examples that this numerical method yields reliable estimates. In contrast, the harmonic mean estimator leads to a strong overestimation of the marginal likelihood, which is all the more pronounced as the model is higher dimensional. As a result, the harmonic mean estimator systematically favors more parameterrich models, an artefact that might explain some recent puzzling observations, based on harmonic mean estimates, suggesting that Bayes factors tend to overscore complex models. Finally, we apply our method to the comparison of several alternative models of aminoacid replacement. We confirm our previous observations, indicating that modeling pattern heterogeneity across sites tends to yield better models than standard empirical matrices. [Bayes factor; harmonic mean; mixture model; path sampling; phylogeny; thermodynamic integration.] Bayesian methods have become popular in molecular phylogenetics over the recent years. The simple and intuitive interpretation of the concept of probabilities
A.C., Toward a comprehensive phylogeny for mammalian and avian
, 2000
"... These include: This article cites 20 articles, 10 of which can be accessed free at: ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
These include: This article cites 20 articles, 10 of which can be accessed free at: