Results 1 - 10
of
480
Hierarchical phrase-based translation
- Computational Linguistics
, 2007
"... We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from b ..."
Abstract
-
Cited by 597 (9 self)
- Add to MetaCart
(Show Context)
We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from both syntax-based translation and phrase-based translation. We describe our system’s training and decoding methods in detail, and evaluate it for translation speed and translation accuracy. Using BLEU as a metric of translation accuracy, we find that our system performs significantly better than the Alignment Template System, a state-of-the-art phrasebased system. 1.
A hierarchical phrase-based model for statistical machine translation
- IN ACL
, 2005
"... We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of ..."
Abstract
-
Cited by 491 (12 self)
- Add to MetaCart
(Show Context)
We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntaxbased translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical phrasebased model achieves a relative improvement of 7.5 % over Pharaoh, a state-of-the-art phrase-based system.
Scalable inference and training of context-rich syntactic translation models
- In ACL
, 2006
"... Statistical MT has made great progress in the last few years, but current translation models are weak on re-ordering and target language fluency. Syntactic approaches seek to remedy these problems. In this paper, we take the framework for acquiring multi-level syntactic translation rules of (Galley ..."
Abstract
-
Cited by 280 (21 self)
- Add to MetaCart
(Show Context)
Statistical MT has made great progress in the last few years, but current translation models are weak on re-ordering and target language fluency. Syntactic approaches seek to remedy these problems. In this paper, we take the framework for acquiring multi-level syntactic translation rules of (Galley et al., 2004) from aligned tree-string pairs, and present two main extensions of their approach: first, instead of merely computing a single derivation that minimally explains a sentence pair, we construct a large number of derivations that include contextually richer rules, and account for multiple interpretations of unaligned words. Second, we propose probability estimates and a training procedure for weighting these rules. We contrast different approaches on real examples, show that our estimates based on multiple derivations favor phrasal re-orderings that are linguistically better motivated, and establish that our larger rules provide a 3.63 BLEU point increase over minimal rules. 1
Better k-best parsing
, 2005
"... We discuss the relevance of k-best parsing to recent applications in natural language processing, and develop efficient algorithms for k-best trees in the framework of hypergraph parsing. To demonstrate the efficiency, scalability and accuracy of these algorithms, we present experiments on Bikel’s i ..."
Abstract
-
Cited by 190 (16 self)
- Add to MetaCart
We discuss the relevance of k-best parsing to recent applications in natural language processing, and develop efficient algorithms for k-best trees in the framework of hypergraph parsing. To demonstrate the efficiency, scalability and accuracy of these algorithms, we present experiments on Bikel’s implementation of Collins ’ lexicalized PCFG model, and on Chiang’s CFG-based decoder for hierarchical phrase-based translation. We show in particular how the improved output of our algorithms has the potential to improve results from parse reranking systems and other applications. 1
Minimum Bayes-risk decoding for statistical machine translation
- IN PROCEEDINGS OF HLT-NAACL
, 2004
"... We present Minimum Bayes-Risk (MBR) decoding for statistical machine translation. This statistical approach aims to minimize expected loss of translation errors under loss functions that measure translation performance. We describe a hierarchy of loss functions that incorporate different levels of l ..."
Abstract
-
Cited by 179 (16 self)
- Add to MetaCart
We present Minimum Bayes-Risk (MBR) decoding for statistical machine translation. This statistical approach aims to minimize expected loss of translation errors under loss functions that measure translation performance. We describe a hierarchy of loss functions that incorporate different levels of linguistic information from word strings, word-to-word alignments from an MT system, and syntactic structure from parse-trees of source and target language sentences. We report the performance of the MBR decoders on a Chinese-to-English translation task. Our results show that MBR decoding can be used to tune statistical MT performance for specific loss functions.
Large language models in machine translation
- In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
, 2007
"... This paper reports on the benefits of largescale statistical language modeling in machine translation. A distributed infrastructure is proposed which we use to train on up to 2 trillion tokens, resulting in language models having up to 300 billion n-grams. It is capable of providing smoothed probabi ..."
Abstract
-
Cited by 178 (9 self)
- Add to MetaCart
(Show Context)
This paper reports on the benefits of largescale statistical language modeling in machine translation. A distributed infrastructure is proposed which we use to train on up to 2 trillion tokens, resulting in language models having up to 300 billion n-grams. It is capable of providing smoothed probabilities for fast, single-pass decoding. We introduce a new smoothing method, dubbed Stupid Backoff, that is inexpensive to train on large data sets and approaches the quality of Kneser-Ney Smoothing as the amount of training data increases. 1
Tree-to-String Alignment Template for Statistical Machine Translation
, 2006
"... We present a novel translation model based on tree-to-string alignment template (TAT) which describes the alignment between a source parse tree and a target string. A TAT is capable of generating both terminals and non-terminals and performing reordering at both low and high levels. The model is lin ..."
Abstract
-
Cited by 173 (32 self)
- Add to MetaCart
(Show Context)
We present a novel translation model based on tree-to-string alignment template (TAT) which describes the alignment between a source parse tree and a target string. A TAT is capable of generating both terminals and non-terminals and performing reordering at both low and high levels. The model is linguistically syntaxbased because TATs are extracted automatically from word-aligned, source side parsed parallel texts. To translate a source sentence, we first employ a parser to produce a source parse tree and then apply TATs to transform the tree into a target string. Our experiments show that the TAT-based model significantly outperforms Pharaoh, a state-of-the-art decoder for phrase-based models.
A Smorgasbord of Features for Statistical Machine Translation
, 2004
"... We describe a methodology for rapid experimentation in statistical machine translation which we use to add a large number of features to a baseline system exploiting features from a wide range of levels of syntactic representation. Feature ..."
Abstract
-
Cited by 150 (4 self)
- Add to MetaCart
We describe a methodology for rapid experimentation in statistical machine translation which we use to add a large number of features to a baseline system exploiting features from a wide range of levels of syntactic representation. Feature
Statistical syntax-directed translation with extended domain of locality
- In Proc. AMTA 2006
, 2006
"... A syntax-directed translator first parses the source-language input into a parsetree, and then recursively converts the tree into a string in the target-language. We model this conversion by an extended treeto-string transducer that have multi-level trees on the source-side, which gives our system m ..."
Abstract
-
Cited by 121 (14 self)
- Add to MetaCart
(Show Context)
A syntax-directed translator first parses the source-language input into a parsetree, and then recursively converts the tree into a string in the target-language. We model this conversion by an extended treeto-string transducer that have multi-level trees on the source-side, which gives our system more expressive power and flexibility. We also define a direct probability model and use a linear-time dynamic programming algorithm to search for the best derivation. The model is then extended to the general log-linear framework in order to rescore with other features like n-gram language models. We devise a simple-yet-effective algorithm to generate non-duplicate k-best translations for n-gram rescoring. Initial experimental results on English-to-Chinese translation are presented. 1
Improved statistical machine translation using paraphrases
- In Proceedings of HLT/NAACL-2006
, 2006
"... Parallel corpora are crucial for training SMT systems. However, for many language pairs they are available only in very limited quantities. For these language pairs a huge portion of phrases encountered at run-time will be unknown. We show how techniques from paraphrasing can be used to deal with th ..."
Abstract
-
Cited by 117 (3 self)
- Add to MetaCart
(Show Context)
Parallel corpora are crucial for training SMT systems. However, for many language pairs they are available only in very limited quantities. For these language pairs a huge portion of phrases encountered at run-time will be unknown. We show how techniques from paraphrasing can be used to deal with these otherwise unknown source language phrases. Our results show that augmenting a stateof-the-art SMT system with paraphrases leads to significantly improved coverage and translation quality. For a training corpus with 10,000 sentence pairs we increase the coverage of unique test set unigrams from 48 % to 90%, with more than half of the newly covered items accurately translated, as opposed to none in current approaches. 1