Results 1  10
of
142
ExternalMemory Graph Algorithms
, 1995
"... We present a collection of new techniques for designing and analyzing efficient externalmemory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: ffl Proximateneighboring. We present a simple method for der ..."
Abstract

Cited by 183 (22 self)
 Add to MetaCart
We present a collection of new techniques for designing and analyzing efficient externalmemory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: ffl Proximateneighboring. We present a simple method for deriving externalmemory lower bounds via reductions from a problem we call the "proximate neighbors" problem. We use this technique to derive nontrivial lower bounds for such problems as list ranking, expression tree evaluation, and connected components. ffl PRAM simulation. We give methods for efficiently simulating PRAM computations in external memory, even for some cases in which the PRAM algorithm is not workoptimal. We apply this to derive a number of optimal (and simple) externalmemory graph algorithms. ffl Timeforward processing. We present a general technique for evaluating circuits (or "circuitlike" computations) in external memory. We also use this in a deterministic list rank...
What Can Be Computed Locally?
 SIAM J. Comput
, 1993
"... . The purpose of this paper is a study of computation that can be done locally in a distributed network, where "locally" means within time (or distance) independent of the size of the network. Locally Checkable Labeling (LCL) problems are considered, where the legality of a labeling can be ..."
Abstract

Cited by 155 (2 self)
 Add to MetaCart
. The purpose of this paper is a study of computation that can be done locally in a distributed network, where "locally" means within time (or distance) independent of the size of the network. Locally Checkable Labeling (LCL) problems are considered, where the legality of a labeling can be checked locally (e.g., coloring). The results include the following: ffl There are nontrivial LCL problems that have local algorithms. ffl There is a variant of the dining philosophers problem that can be solved locally. ffl Randomization cannot make an LCL problem local; i.e., if a problem has a local randomized algorithm then it has a local deterministic algorithm. ffl It is undecidable, in general, whether a given LCL has a local algorithm. ffl However, it is decidable whether a given LCL has an algorithm that operates in a given time t. ffl Any LCL problem that has a local algorithm has one that is orderinvariant (the algorithm depends only on the order of the processor id's). Keywords: ...
What Cannot Be Computed Locally!
 In Proceedings of the 23 rd ACM Symposium on the Principles of Distributed Computing (PODC
, 2004
"... We give time lower bounds for the distributed approximation of minimum vertex cover (MVC) and related problems such as minimum dominating set (MDS). In k communication rounds, MVC and MDS can only be approximated by factors# /k) and # /k) for some constant c, where n and # denote the number ..."
Abstract

Cited by 139 (28 self)
 Add to MetaCart
We give time lower bounds for the distributed approximation of minimum vertex cover (MVC) and related problems such as minimum dominating set (MDS). In k communication rounds, MVC and MDS can only be approximated by factors# /k) and # /k) for some constant c, where n and # denote the number of nodes and the largest degree in the graph. The number of rounds required in order to achieve a constant or even only a polylogarithmic approximation ratio is at log n/ log log n) and#1 #/ log log #). By a simple reduction, the latter lower bounds also hold for the construction of maximal matchings and maximal independent sets.
Parallel SymmetryBreaking in Sparse Graphs
 SIAM J. Disc. Math
, 1987
"... We describe efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3color a rooted tree in O(lg n) time on an EREW PRAM using a linear number of processors. We use th ..."
Abstract

Cited by 88 (2 self)
 Add to MetaCart
(Show Context)
We describe efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3color a rooted tree in O(lg n) time on an EREW PRAM using a linear number of processors. We use these techniques to construct fast linear processor algorithms for several problems, including (\Delta + 1)coloring constantdegree graphs and 5coloring planar graphs. We also prove lower bounds for 2coloring directed lists and for finding maximal independent sets in arbitrary graphs. 1 Introduction Some problems for which trivial sequential algorithms exist appear to be much harder to solve in a parallel framework. When converting a sequential algorithm to a parallel one, at each step of the parallel algorithm we have to choose a set of operations which may be executed in parallel. Often, we have to choose these operations from a large set A preliminary version of this paper appear...
A LogStar Distributed Maximal Independent Set Algorithm . . .
 PODC'08
, 2008
"... We present a novel distributed algorithm for the maximal independent set (MIS) problem. On growthbounded graphs (GBG) our deterministic algorithm finishes in O(log ∗ n) time, n being the number of nodes. In light of Linial’s Ω(log ∗ n) lower bound our algorithm is asymptotically optimal. Our algori ..."
Abstract

Cited by 76 (15 self)
 Add to MetaCart
We present a novel distributed algorithm for the maximal independent set (MIS) problem. On growthbounded graphs (GBG) our deterministic algorithm finishes in O(log ∗ n) time, n being the number of nodes. In light of Linial’s Ω(log ∗ n) lower bound our algorithm is asymptotically optimal. Our algorithm answers prominent open problems in the ad hoc/sensor network domain. For instance, it solves the connected dominating set problem for unit disk graphs in O(log ∗ n) time, exponentially faster than the stateoftheart algorithm. With a new extension our algorithm also computes a δ + 1 coloring in O(log ∗ n) time, where δ is the maximum degree of the graph.
Cacheoblivious priority queue and graph algorithm applications
 In Proc. 34th Annual ACM Symposium on Theory of Computing
, 2002
"... In this paper we develop an optimal cacheoblivious priority queue data structure, supporting insertion, deletion, and deletemin operations in O ( 1 B logM/B N) amortized memory B transfers, where M and B are the memory and block transfer sizes of any two consecutive levels of a multilevel memory hi ..."
Abstract

Cited by 68 (9 self)
 Add to MetaCart
(Show Context)
In this paper we develop an optimal cacheoblivious priority queue data structure, supporting insertion, deletion, and deletemin operations in O ( 1 B logM/B N) amortized memory B transfers, where M and B are the memory and block transfer sizes of any two consecutive levels of a multilevel memory hierarchy. In a cacheoblivious data structure, M and B are not used in the description of the structure. The bounds match the bounds of several previously developed externalmemory (cacheaware) priority queue data structures, which all rely crucially on knowledge about M and B. Priority queues are a critical component in many of the best known externalmemory graph algorithms, and using our cacheoblivious priority queue we develop several cacheoblivious graph algorithms.
Waitfree Parallel Algorithms for the UnionFind Problem
 In Proc. 23rd ACM Symposium on Theory of Computing
, 1994
"... We are interested in designing efficient data structures for a shared memory multiprocessor. In this paper we focus on the UnionFind data structure. We consider a fully asynchronous model of computation where arbitrary delays are possible. Thus we require our solutions to the data structure problem ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
(Show Context)
We are interested in designing efficient data structures for a shared memory multiprocessor. In this paper we focus on the UnionFind data structure. We consider a fully asynchronous model of computation where arbitrary delays are possible. Thus we require our solutions to the data structure problem have the waitfree property, meaning that each thread continues to make progress on its operations, independent of the speeds of the other threads. In this model efficiency is best measured in terms of the total number of instructions used to perform a sequence of data structure operations, the work performed by the processors. We give a waitfree implementation of an efficient algorithm for UnionFind. In addition we show that the worst case performance of the algorithm can be improved by simulating a synchronized algorithm, or by simulating a larger machine if the data structure requests support sufficient parallelism. Our solutions apply to a much more general adversary model than has be...
Coloring unstructured radio networks
, 2005
"... During and immediately after their deployment, ad hoc and sensor networks lack an efficient communication scheme rendering even the most basic network coordination problems difficult. Before any reasonable communication can take place, nodes must come up with an initial structure that can serve as ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
(Show Context)
During and immediately after their deployment, ad hoc and sensor networks lack an efficient communication scheme rendering even the most basic network coordination problems difficult. Before any reasonable communication can take place, nodes must come up with an initial structure that can serve as a foundation for more sophisticated algorithms. In this paper, we consider the problem of obtaining a vertex coloring as such an initial structure. We propose an algorithm that works in the unstructured radio network model. This model captures the characteristics of newly deployed ad hoc and sensor networks, i.e. asynchronous wakeup, no collisiondetection, and scarce knowledge about the network topology. When modeling the network as a graph with bounded independence, our algorithm produces a correct coloring with O(∆) colors in time O( ∆ log n) with high probability, where n and ∆ are the number of nodes in the network and the maximum degree, respectively. Also, the number of locally used colors depends only on the local node density. Graphs with bounded independence generalize unit disk graphs as well as many other wellknown models for
Improved Parallel Integer Sorting without Concurrent Writing
, 1992
"... We show that n integers in the range 1 : : n can be sorted stably on an EREW PRAM using O(t) time and O(n( p log n log log n + (log n) 2 =t)) operations, for arbitrary given t log n log log n, and on a CREW PRAM using O(t) time and O(n( p log n + log n=2 t=logn )) operations, for arbitrary ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
We show that n integers in the range 1 : : n can be sorted stably on an EREW PRAM using O(t) time and O(n( p log n log log n + (log n) 2 =t)) operations, for arbitrary given t log n log log n, and on a CREW PRAM using O(t) time and O(n( p log n + log n=2 t=logn )) operations, for arbitrary given t log n. In addition, we are able to sort n arbitrary integers on a randomized CREW PRAM within the same resource bounds with high probability. In each case our algorithm is a factor of almost \Theta( p log n) closer to optimality than all previous algorithms for the stated problem in the stated model, and our third result matches the operation count of the best previous sequential algorithm. We also show that n integers in the range 1 : : m can be sorted in O((log n) 2 ) time with O(n) operations on an EREW PRAM using a nonstandard word length of O(log n log log n log m) bits, thereby greatly improving the upper bound on the word length necessary to sort integers with a linear t...