Results 1 - 10
of
574
Evolving Neural Networks through Augmenting Topologies
- Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task ..."
Abstract
-
Cited by 536 (112 self)
- Add to MetaCart
(Show Context)
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.
Competitive Coevolution through Evolutionary Complexification
- Journal of Artificial Intelligence Research
, 2002
"... Two major goals in machine learning are the discovery of complex multidimensional solutions and continual improvement of existing solutions. In this paper, we argue that complexification, i.e. the incremental elaboration of solutions through adding new structure, achieves both these goals. We demons ..."
Abstract
-
Cited by 202 (71 self)
- Add to MetaCart
(Show Context)
Two major goals in machine learning are the discovery of complex multidimensional solutions and continual improvement of existing solutions. In this paper, we argue that complexification, i.e. the incremental elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) method, which evolves increasingly complex neural network architectures. NEAT is applied to an open-ended coevolutionary robot duel domain where robot controllers compete head to head. Because the robot duel domain supports a wide range of sophisticated strategies, and because coevolution benefits from an escalating arms race, it serves as a suitable testbed for observing the effect of evolving increasingly complex controllers. The result is an arms race of increasingly sophisticated strategies. When compared to the evolution of networks with fixed structure, complexifying networks discover significantly more sophisticated strategies. The results suggest that in order to realize the full potential of evolution, and search in general, solutions must be allowed to complexify as well as optimize.
Compositional pattern producing networks: A novel abstraction of development
, 2007
"... Natural DNA can encode complexity on an enormous scale. Researchers are attempting to achieve the same representational efficiency in computers by implementing developmental encodings, i.e. encodings that map the genotype to the phenotype through a process of growth from a small starting point to a ..."
Abstract
-
Cited by 122 (42 self)
- Add to MetaCart
Natural DNA can encode complexity on an enormous scale. Researchers are attempting to achieve the same representational efficiency in computers by implementing developmental encodings, i.e. encodings that map the genotype to the phenotype through a process of growth from a small starting point to a mature form. A major challenge in in this effort is to find the right level of abstraction of biological development to capture its essential properties without introducing unnecessary inefficiencies. In this paper, a novel abstraction of natural development, called Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike currently accepted abstractions such as iterative rewrite systems and cellular growth simulations, CPPNs map to the phenotype without local interaction, that is, each individual component of the phenotype is determined independently of every other component. Results produced with CPPNs through interactive evolution of two-dimensional images show that such an encoding can nevertheless produce structural motifs often attributed to more conventional developmental abstractions, suggesting that local interaction may not be essential to the desirable properties of natural encoding in the way that is usually assumed.
Real-time neuroevolution in the nero video game
- IEEE Transactions on Evolutionary Computation
, 2005
"... In most modern video games, character behavior is scripted; no matter how many times the player exploits a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with the player, behavior could improve as the game is played, keeping it interesting. This pap ..."
Abstract
-
Cited by 120 (37 self)
- Add to MetaCart
(Show Context)
In most modern video games, character behavior is scripted; no matter how many times the player exploits a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with the player, behavior could improve as the game is played, keeping it interesting. This paper introduces the real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method for evolving increasingly complex artificial neural networks in real time, as a game is being played. The rtNEAT method allows agents to change and improve during the game. In fact, rtNEAT makes possible an entirely new genre of video games in which the player trains a team of agents through a series of customized exercises. To demonstrate this concept, the NeuroEvolving Robotic Operatives (NERO) game was built based on rtNEAT. In NERO, the player trains a team of virtual robots for combat against other players ’ teams. This paper describes results from this novel application of machine learning, and demonstrates that rtNEAT makes possible video games like NERO where agents evolve and adapt in real time. In the future, rtNEAT may allow new kinds of educational and training applications through interactive and adapting games. 1
Evolutionary function approximation for reinforcement learning
- Journal of Machine Learning Research
, 2006
"... Ø�ÓÒ�ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÒÓÚ�Ð�ÔÔÖÓ��ØÓ�ÙØÓÑ�Ø��ÐÐÝ× � Ø�ÓÒ�Ð���×�ÓÒ×Ì��ר��×�×�ÒÚ�ר���Ø�×�ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒ �Ò�ÓÖ�Ñ�ÒØÐ��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ö�Ø��×Ù�×�ØÓ�Ø��×�Ø�×� × ÁÒÑ�ÒÝÑ���Ò�Ð��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ò���ÒØÑÙרÐ��ÖÒ Ñ�ÒØ���Òר�ÒØ��Ø�ÓÒÓ��ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ � Ù�Ðר��Ø�Ö���ØØ�Ö��Ð�ØÓÐ��ÖÒÁÔÖ�×�ÒØ��ÙÐÐÝ�ÑÔÐ � Ø�Ó ..."
Abstract
-
Cited by 110 (17 self)
- Add to MetaCart
(Show Context)
Ø�ÓÒ�ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÒÓÚ�Ð�ÔÔÖÓ��ØÓ�ÙØÓÑ�Ø��ÐÐÝ× � Ø�ÓÒ�Ð���×�ÓÒ×Ì��ר��×�×�ÒÚ�ר���Ø�×�ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒ �Ò�ÓÖ�Ñ�ÒØÐ��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ö�Ø��×Ù�×�ØÓ�Ø��×�Ø�×� × ÁÒÑ�ÒÝÑ���Ò�Ð��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ò���ÒØÑÙרÐ��ÖÒ Ñ�ÒØ���Òר�ÒØ��Ø�ÓÒÓ��ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ � Ù�Ðר��Ø�Ö���ØØ�Ö��Ð�ØÓÐ��ÖÒÁÔÖ�×�ÒØ��ÙÐÐÝ�ÑÔÐ � Ø�ÓÒÛ���ÓÑ��Ò�ׯ��Ì�Ò�ÙÖÓ�ÚÓÐÙØ�ÓÒ�ÖÝÓÔØ�Ñ�Þ � Ð�Ø�Ò��ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ�ØÓÖÖ�ÔÖ�×�ÒØ�Ø�ÓÒר��Ø�Ò��Ð� Ø�ÓÒØ��Ò�ÕÙ�Û�Ø�ÉÐ��ÖÒ�Ò��ÔÓÔÙÐ�ÖÌ�Ñ�Ø�Ó�Ì� � �Æ��ÒØ�Ò��Ú��Ù�ÐÐ��ÖÒ�Ò�Ì��×Ñ�Ø�Ó��ÚÓÐÚ�×�Ò��Ú� � ÓÔØ�Ñ�Þ�Ø�ÓÒ��ÐÐ�ÒØ��×�Ø��ÓÖÝ��Ú�ÐÓÔ�Ò��«�Ø�Ú�Ö��Ò �ÓÖÁÒר����ØÖ���Ú�×ÓÒÐÝÔÓ×�Ø�Ú��Ò�Ò���Ø�Ú�Ö�Û�Ö� × ÔÖÓ�Ð�Ñ××Ù��×ÖÓ�ÓØÓÒØÖÓÐ��Ñ�ÔÐ�Ý�Ò��Ò�×Ýר�Ñ �ÒÛ���Ø�����ÒØÒ�Ú�Ö×��×�Ü�ÑÔÐ�×Ó�ÓÖÖ�Ø����Ú 1.
Neuroevolution: from architectures to learning
, 2008
"... Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm ..."
Abstract
-
Cited by 78 (3 self)
- Add to MetaCart
Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architectures.
Evolutionary tuning of multiple svm parameters
- In Proc. of the 12th European Symposium on Artificial Neural Networks (ESANN 2004
, 2004
"... The problem of model selection for support vector machines (SVMs) is considered. We propose an evolutionary approach to determine multiple SVM hyperparameters: The covariance matrix adaptation evolution strategy (CMA-ES) is used to determine the kernel from a parameterized kernel space and to contro ..."
Abstract
-
Cited by 74 (5 self)
- Add to MetaCart
(Show Context)
The problem of model selection for support vector machines (SVMs) is considered. We propose an evolutionary approach to determine multiple SVM hyperparameters: The covariance matrix adaptation evolution strategy (CMA-ES) is used to determine the kernel from a parameterized kernel space and to control the regularization. Our method is applicable to optimize non-differentiable kernel functions and arbitrary model selection criteria. We demonstrate on benchmark datasets that the CMA-ES improves the results achieved by grid search already when applied to few hyperparameters. Further, we show that the CMA-ES is able to handle much more kernel parameters compared to grid-search and that tuning of the scaling and the rotation of Gaussian kernels can lead to better results in comparison to standard Gaussian kernels with a single bandwidth parameter. In particular, more flexibility of the kernel can reduce the number of support vectors. Key words: support vector machines, model selection, evolutionary algorithms 1
Efficient reinforcement learning through evolving neural network topologies
- IN PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO-2002
, 2002
"... Neuroevolution is currently the strongest method on the pole-balancing benchmark reinforcement learning tasks. Although earlier studies suggested that there was an advantage in evolving the network topology as well as connection weights, the leading neuroevolution systems evolve fixed networks ..."
Abstract
-
Cited by 73 (20 self)
- Add to MetaCart
(Show Context)
Neuroevolution is currently the strongest method on the pole-balancing benchmark reinforcement learning tasks. Although earlier studies suggested that there was an advantage in evolving the network topology as well as connection weights, the leading neuroevolution systems evolve fixed networks. Whether evolving structure can improve performance is an open question. In this article, we introduce such a system, NeuroEvolution of Augmenting Topologies (NEAT). We show that when structure is evolved (1) with a principled method of crossover, (2) by protecting structural innovation, and (3) through incremental growth from minimal structure, learning is significantly faster and stronger than with the best fixed-topology methods. NEAT also shows that it is possible to evolve populations of increasingly large genomes, achieving highly complex solutions that would otherwise be difficult to optimize.