Results 1  10
of
41
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
(Show Context)
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadratic programming, semidefinite programming, and nonconvex and nonlinear problems, have reached varying levels of maturity. We review some of the key developments in the area, including comments on both the complexity theory and practical algorithms for linear programming, semidefinite programming, monotone linear complementarity, and convex programming over sets that can be characterized by selfconcordant barrier functions.
Interior Point Methods For Optimal Control Of DiscreteTime Systems
 Journal of Optimization Theory and Applications
, 1993
"... . We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discretetime optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
(Show Context)
. We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discretetime optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete time linearquadratic regulator problem with mixed state/control constraints, and show how it can be efficiently incorporated into an inexact sequential quadratic programming algorithm for nonlinear problems. The key to the efficiency of the interiorpoint method is the narrowbanded structure of the coefficient matrix which is factorized at each iteration. Key words. interior point algorithms, optimal control, banded linear systems. 1. Introduction. The problem of optimal control of an initial value ordinary differential equation, with Bolza objectives and mixed constraints, is min x;u Z T 0 L(x(t); u(t); t) dt + OE f (x(T )); x(t) = f(x(t); u(t); t); x(0) = x init ; (1.1) g(x(t); u(...
A superlinearly convergent predictorcorrector method for degenerate LCP in a wide neighborhood of the central path with O (√n L)iteration complexity
, 2006
"... ..."
A Path to the ArrowDebreu Competitive Market Equilibrium
 MATH. PROGRAMMING
, 2004
"... We present polynomialtime interiorpoint algorithms for solving the Fisher and ArrowDebreu competitive market equilibrium problems with linear utilities and n players. Both of them have the arithmetic operation complexity bound of O(n 4 log(1/ɛ)) for computing an ɛequilibrium solution. If the p ..."
Abstract

Cited by 43 (7 self)
 Add to MetaCart
(Show Context)
We present polynomialtime interiorpoint algorithms for solving the Fisher and ArrowDebreu competitive market equilibrium problems with linear utilities and n players. Both of them have the arithmetic operation complexity bound of O(n 4 log(1/ɛ)) for computing an ɛequilibrium solution. If the problem data are rational numbers and their bitlength is L, then the bound to generate an exact solution is O(n 4 L) which is in line with the best complexity bound for linear programming of the same dimension and size. This is a significant improvement over the previously best bound O(n 8 log(1/ɛ)) for approximating the two problems using other methods. The key ingredient to derive these results is to show that these problems admit convex optimization formulations, efficient barrier functions and fast rounding techniques. We also present a continuous path leading to the set of the ArrowDebreu equilibrium, similar to the central path developed for linear programming interiorpoint methods. This path is derived from the weighted logarithmic utility and barrier functions and the Brouwer fixedpoint theorem. The defining equations are bilinear and possess some primaldual structure for the application of the Newtonbased pathfollowing method.
Convergence of Interior Point Algorithms for the Monotone Linear Complementarity Problem
, 1994
"... The literature on interior point algorithms shows impressive results related to the speed of convergence of the objective values, but very little is known about the convergence of the iterate sequences. This paper studies the horizontal linear complementarity problem, and derives general convergence ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
The literature on interior point algorithms shows impressive results related to the speed of convergence of the objective values, but very little is known about the convergence of the iterate sequences. This paper studies the horizontal linear complementarity problem, and derives general convergence properties for algorithms based on Newton iterations. This problem provides a simple and general framework for most existing primaldual interior point methods. The conclusion is that most of the published algorithms of this kind generate convergent sequences. In many cases (whenever the convergence is not too fast in a certain sense), the sequences converge to the analytic center of the optimal face.
Polynomial interior point cutting plane methods
 Optimization Methods and Software
, 2003
"... Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approxim ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the relaxation. Typically, these cutting plane methods can be developed so as to exhibit polynomial convergence. The volumetric cutting plane algorithm achieves the theoretical minimum number of calls to a separation oracle. Longstep versions of the algorithms for solving convex optimization problems are presented. 1
Degeneracy in Interior Point Methods for Linear Programming
, 1991
"... ... In this paper, we survey the various theoretical and practical issues related to degeneracy in IPM's for linear programming. We survey results which for the most part already appeared in the literature. Roughly speaking, we shall deal with four topics: the effect of degeneracy on the conver ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
... In this paper, we survey the various theoretical and practical issues related to degeneracy in IPM's for linear programming. We survey results which for the most part already appeared in the literature. Roughly speaking, we shall deal with four topics: the effect of degeneracy on the convergence of IPM's, on the trajectories followed by the algorithms, the effect of degeneracy in numerical performance, and on finding basic solutions.
Qsuperlinear convergence of the iterates in primaldual interiorpoint methods
 MATH. PROGRAM., SER. A 91: 99–115 (2001)
, 2001
"... ..."